Limnology

, 7:171 | Cite as

Growth strategy of an emergent macrophyte, Typha orientalis Presl, in comparison with Typha latifolia L. and Typha angustifolia L.

Research Paper

Abstract

The growth strategy of an emergent plant, Typha orientalis Presl, was examined in experimental ponds in comparison with two other Typha species distributed in Japan, Typha latifolia L. and Typha angustifolia L. T. orientalis showed the greatest ability of vegetative reproduction at the expense of growth in height. T. orientalis started to produce new ramets earlier than T. latifolia and T. angustifolia. These results suggest that T. orientalis should be a rather pioneer-like species and would be restricted to disturbed habitats.

Key words

Growth strategy Typha angustifoliaTypha latifoliaTypha orientalis Presl 

References

  1. Asaeda T, Hai DN, Manatunge J, Williams D, Roberts J (2005) Latitudinal characteristics of below-and above-ground biomass of Typha: a modeling approach. Ann Bot 96:299–312CrossRefPubMedGoogle Scholar
  2. Dickerman JA, Wetzel RG (1985) Clonal growth in Typha latifolia: population dynamics and demography of the ramets. J Ecol 73:535–552CrossRefGoogle Scholar
  3. Djebrouni M, Huon A (1988) Structure and biomass of a Typha stand revealed by multidimensional analysis. Aquat Bot 30:331–342CrossRefGoogle Scholar
  4. Grace JB (1988) The effects of nutrient additions on mixtures of Typha latifolia L. and Typha domingensis Pers. along a water-depth gradient. Aquat Bot 31:83–92CrossRefGoogle Scholar
  5. Grace JB (1989) Effects of water depth on Typha latifolia and Typha domingensis. Am J Bot 76:762–768CrossRefGoogle Scholar
  6. Grace JB, Wetzel RG (1981a) Effects of size and growth rate on vegetative reproduction in Typha. Oecologia (Berl) 50:158–161CrossRefGoogle Scholar
  7. Grace JB, Wetzel RG (1981b) Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. Am Nat 118:463–474CrossRefGoogle Scholar
  8. Grace JB, Wetzel RG (1982a) Niche differentiation between two rhizomatous plant species: Typha latifolia and Typha angustifolia. Can J Bot 60:46–57CrossRefGoogle Scholar
  9. Grace JB, Wetzel RG (1982b) Variation in growth and reproduction within populations of two rhizomatous plant species: Typha latifolia and Typha angustifolia. Oecologia (Berl) 53:258–263CrossRefGoogle Scholar
  10. McNaughton SJ (1975) r-and k-selection in Typha. Am Nat 109:251–261CrossRefGoogle Scholar
  11. McNaughton SJ (1996) Ecotype function in the Typha community-type. Ecol Mongr 36:297–325CrossRefGoogle Scholar
  12. Roberts J, Ganf GG (1986) Annual production of Typha orientalis Presl. in inland Australia. Aust J Mar Freshw Res 37:659–668CrossRefGoogle Scholar
  13. Shay JM, Shay CT (1986) Prairie marshes in western Canada, with specific reference to the ecology of five emergent macrophytes. Can J Bot 64:443–454Google Scholar
  14. Sorrell BK, Mendelssohn IA, Mckee KL, Woods RA (2000) Ecophysiology of wetland plant roots: a modeling comparison of aeration in relation to species distribution. Ann Bot 86:675–685CrossRefGoogle Scholar
  15. Ulrich KE, Burton TM (1988) An experimental comparison of the dry matter and nutrient distribution patterns of Typha latifolia L., Typha angustifolia L., Sparganium eurycarpum Engelm. and Phragmites australis (Cav.) Trin. ex Steudel. Aquat Bot 32:129–139CrossRefGoogle Scholar
  16. Weisner SEB (1991) Within-lake patterns in depth penetration of emergent vegetation. Freshw Biol 26:133–142CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Limnology 2006

Authors and Affiliations

  1. 1.National Institute for Environmental StudiesIbarakiJapan
  2. 2.Department of Biology, Graduate School of Science and TechnologyChiba UniversityChibaJapan

Personalised recommendations