Skip to main content

Advertisement

Log in

Whole exome sequencing in molecular diagnostics of cancer decreases over time: evidence from a cost analysis in the French setting

  • Original Paper
  • Published:
The European Journal of Health Economics Aims and scope Submit manuscript

Abstract

Objectives

Although high-throughput sequencing is revolutionising medicine, data on the actual cost of whole exome sequencing (WES) applications are needed. We aimed at assessing the cost of WES at a French cancer institute in 2015 and 2018.

Methods

Actual costs of WES application in oncology research were determined using both micro-costing and gross-costing for the years 2015 and 2018, before and after the acquisition of a new sequencer. The entire workflow process of a WES test was tracked, and the number and unit price of each resource were identified at the most detailed level, from library preparation to bioinformatics analyses. In addition, we conducted an ad hoc analysis of the bioinformatics storage costs of data issued from WES analyses.

Results

The cost of WES has decreased substantially, from €1921 per sample (i.e. cost of €3842 per patient) in 2015 to €804 per sample (i.e. cost of €1,608 per patient) in 2018, representing a decrease of 58%. In the meantime, the cost of bioinformatics storage has increased from €19,836 to €200,711.

Conclusion

This study suggests that WES cost has decreased significantly in recent years. WES has become affordable, even though clinical utility and efficiency still need to be confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Gustave Roussy genomic platform and bioinformatics platform

Fig. 2

Source: Gustave Roussy genomic platform and bioinformatics platform

Fig. 3

Similar content being viewed by others

References

  1. Buxbaum, J.D., Daly, M.J., Devlin, B., Lehner, T., Roeder, K., State, M.W.: The Autism Sequencing Consortium: Large scale, high throughput sequencing in autism spectrum disorders. Neuron (2012). https://doi.org/10.1016/j.neuron.2012.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xue, Y., Ankala, A., Wilcox, W.R., Hegde, M.R.: Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 17, 444–451 (2015). https://doi.org/10.1038/gim.2014.122

    Article  CAS  Google Scholar 

  3. Mosele, F., Remon, J., Mateo, J., Westphalen, C.B., Barlesi, F., Lolkema, M.P., Normanno, N., Scarpa, A., Robson, M., Meric-Bernstam, F., Wagle, N., Stenzinger, A., Bonastre, J., Bayle, A., Michiels, S., Bièche, I., Rouleau, E., Jezdic, S., Douillard, J.-Y., Reis-Filho, J.S., Dienstmann, R., André, F.: Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. (2020). https://doi.org/10.1016/j.annonc.2020.07.014

    Article  Google Scholar 

  4. Mueller, S., Jain, P., Liang, W.S., Kilburn, L., Kline, C., Gupta, N., Panditharatna, E., Magge, S.N., Zhang, B., Zhu, Y., Crawford, J.R., Banerjee, A., Nazemi, K., Packer, R.J., Petritsch, C.K., Truffaux, N., Roos, A., Nasser, S., Phillips, J.J., Solomon, D., Molinaro, A., Waanders, A.J., Byron, S.A., Berens, M.E., Kuhn, J., Nazarian, J., Prados, M., Resnick, A.C.: A pilot precision medicine trial for children with diffuse intrinsic pontine glioma-PNOC003: a report from the Pacific Pediatric Neuro-Oncology Consortium. Int. J. Cancer. 145, 1889–1901 (2019). https://doi.org/10.1002/ijc.32258

    Article  CAS  PubMed  Google Scholar 

  5. Massard, C., Michiels, S., Ferté, C., Deley, M.-C.L., Lacroix, L., Hollebecque, A., Verlingue, L., Ileana, E., Rosellini, S., Ammari, S., Ngo-Camus, M., Bahleda, R., Gazzah, A., Varga, A., Postel-Vinay, S., Loriot, Y., Even, C., Breuskin, I., Auger, N., Job, B., Baere, T.D., Deschamps, F., Vielh, P., Scoazec, J.-Y., Lazar, V., Richon, C., Ribrag, V., Deutsch, E., Angevin, E., Vassal, G., Eggermont, A., André, F., Soria, J.-C.: High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 7, 586–595 (2017). https://doi.org/10.1158/2159-8290.CD-16-1396

    Article  CAS  PubMed  Google Scholar 

  6. European Proof-of-Concept Therapeutic Stratification Trial of Molecular Anomalies in Relapsed or Refractory Tumors - Full Text View - ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02813135

  7. Harttrampf, A.C., Lacroix, L., Deloger, M., Deschamps, F., Puget, S., Auger, N., Vielh, P., Varlet, P., Balogh, Z., Abbou, S., Allorant, A., Valteau-Couanet, D., Sarnacki, S., Gamiche-Rolland, L., Meurice, G., Minard-Colin, V., Grill, J., Brugieres, L., Dufour, C., Gaspar, N., Michiels, S., Vassal, G., Soria, J.-C., Geoerger, B.: Molecular screening for cancer treatment optimization (MOSCATO-01) in pediatric patients: a single-institutional prospective molecular stratification trial. Clin. Cancer Res. 23, 6101–6112 (2017). https://doi.org/10.1158/1078-0432.CCR-17-0381

    Article  CAS  PubMed  Google Scholar 

  8. Clinical application of comprehensive next generation sequencing in the management of metastatic cancer in adults. J. Clin. Oncol. https://doi.org/10.1200/JCO.2017.35.15_suppl.101

  9. Park, J.J.H., Siden, E., Zoratti, M.J., Dron, L., Harari, O., Singer, J., Lester, R.T., Thorlund, K., Mills, E.J.: Systematic review of basket trials, umbrella trials, and platform trials: a landscape analysis of master protocols. Trials 20, 572 (2019). https://doi.org/10.1186/s13063-019-3664-1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Malone, E.R., Oliva, M., Sabatini, P.J.B., Stockley, T.L., Siu, L.L.: Molecular profiling for precision cancer therapies. Genome Med. 12, 8 (2020). https://doi.org/10.1186/s13073-019-0703-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lian, T., Li, C., Wang, H.: Trametinib in the treatment of multiple malignancies harboring MEK1 mutations. Cancer Treat. Rev. (2019). https://doi.org/10.1016/j.ctrv.2019.101907

    Article  PubMed  Google Scholar 

  12. The Cost of Sequencing a Human Genome, https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost. Accessed 23 Dec 2019

  13. Wright, C.: PHG Foundation: Next steps in the sequence: the implications of whole genome sequencing for health in the UK. https://www.phgfoundation.org/documents/report_next_steps_Sequence.pdf. Accessed 23 Dec 2019

  14. Schwarze, K., Buchanan, J., Taylor, J.C., Wordsworth, S.: Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med. Off. J. Am. Coll. Med. Genet. 20, 1122–1130 (2018). https://doi.org/10.1038/gim.2017.247

    Article  Google Scholar 

  15. Plöthner, M., Frank, M., von der Schulenburg, J.-M.G.: Cost analysis of whole genome sequencing in German clinical practice. Eur. J. Health Econ. 18, 623–633 (2017). https://doi.org/10.1007/s10198-016-0815-0

    Article  PubMed  Google Scholar 

  16. Beale, S., Sanderson, D., Sanniti, A., Dundar, Y., Boland, A.: A scoping study to explore the cost-effectiveness of next-generation sequencing compared with traditional genetic testing for the diagnosis of learning disabilities in children. Health Technol. Assess. Winch. Engl. 19, 1–90 (2015)

    Article  Google Scholar 

  17. Frank, M., Prenzler, A., Eils, R., von der Schulenburg, G.J.-M., Lander, E., Linton, L., Birren, B., Venter, J., Adams, M., Myers, E., Collins, F., Green, E., Guttmacher, A., Guyer, M., Majewski, J., Schwartzentruber, J., Lalonde, E., Montpetit, A., Jabado, N., Ng, S., Turner, E., Robertson, P., Turner, E., Lee, C., Ng, S., Nickerson, D., Shendure, J., Sanger, F., Nicklen, S., Coulson, A., Bubnoff, A.V., Drummond, M., Sculpher, M., Torrance, G., O’Brien, B., Stoddart, G., Tucker, T., Marra, M., Friedman, J., Glenn, T., Pareek, C., Smoczynski, R., Tretyn, A., Moore, G., Shendure, J., Ji, H., Kircher, M., Kelso, J., Mardis, E., Stone, K., Levenson, D., Bick, D., Dimmock, D., Carr, P., Church, G., Valle, D., Hansson, M., Wolf, S., Lawrenz, F., Nelson, C., Wolf, S., Crock, B., Ness, B.V.: Genome sequencing: a systematic review of health economic evidence. Health Econ. Rev. 3, 29 (2013). https://doi.org/10.1186/2191-1991-3-29

    Article  PubMed  PubMed Central  Google Scholar 

  18. McInerney-Leo, A.M., Marshall, M.S., Gardiner, B., Benn, D.E., McFarlane, J., Robinson, B.G., Brown, M.A., Leo, P.J., Clifton-Bligh, R.J., Duncan, E.L.: Whole exome sequencing is an efficient and sensitive method for detection of germline mutations in patients with phaeochromcytomas and paragangliomas. Clin. Endocrinol. (Oxf.) 80, 25–33 (2014). https://doi.org/10.1111/cen.12331

    Article  CAS  Google Scholar 

  19. Neveling, K., Feenstra, I., Gilissen, C., Hoefsloot, L.H., Kamsteeg, E.-J., Mensenkamp, A.R., Rodenburg, R.J.T., Yntema, H.G., Spruijt, L., Vermeer, S., Rinne, T., van Gassen, K.L., Bodmer, D., Lugtenberg, D., de Reuver, R., Buijsman, W., Derks, R.C., Wieskamp, N., van den Heuvel, B., Ligtenberg, M.J.L., Kremer, H., Koolen, D.A., van de Warrenburg, B.P.C., Cremers, F.P.M., Marcelis, C.L.M., Smeitink, J.A.M., Wortmann, S.B., van Zelst-Stams, W.A.G., Veltman, J.A., Brunner, H.G., Scheffer, H., Nelen, M.R.: A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum. Mutat. 34, 1721–1726 (2013). https://doi.org/10.1002/humu.22450

    Article  CAS  PubMed  Google Scholar 

  20. Schieving, J.H.: PP05.5 – 3064: the role of exome sequencing in daily pediatric neurology practice. Eur. J. Paediatr. Neurol. 19, S47 (2015). https://doi.org/10.1016/S1090-3798(15)30154-9

    Article  Google Scholar 

  21. Schofield, D., Alam, K., Douglas, L., Shrestha, R., MacArthur, D.G., Davis, M., Laing, N.G., Clarke, N.F., Burns, J., Cooper, S.T., North, K.N., Sandaradura, S.A., O’Grady, G.L.: Cost-effectiveness of massively parallel sequencing for diagnosis of paediatric muscle diseases. NPJ Genom. Med. (2017). https://doi.org/10.1038/s41525-017-0006-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Soden, S.E., Saunders, C.J., Willig, L.K., Farrow, E.G., Smith, L.D., Petrikin, J.E., LePichon, J.-B., Miller, N.A., Thiffault, I., Dinwiddie, D.L., Twist, G., Noll, A., Heese, B.A., Zellmer, L., Atherton, A.M., Abdelmoity, A.T., Safina, N., Nyp, S.S., Zuccarelli, B., Larson, I.A., Modrcin, A., Herd, S., Creed, M., Ye, Z., Yuan, X., Brodsky, R.A., Kingsmore, S.F.: Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci. Transl. Med. 6, 265 (2014). https://doi.org/10.1126/scitranslmed.3010076

    Article  CAS  Google Scholar 

  23. Stark, Z., Schofield, D., Alam, K., Wilson, W., Mupfeki, N., Macciocca, I., Shrestha, R., White, S.M., Gaff, C.: Prospective comparison of the cost-effectiveness of clinical whole-exome sequencing with that of usual care overwhelmingly supports early use and reimbursement. Genet. Med. 19, 867–874 (2017). https://doi.org/10.1038/gim.2016.221

    Article  PubMed  Google Scholar 

  24. Yohe, S., Thyagarajan, B.: Review of clinical next-generation sequencing. Arch. Pathol. Lab. Med. 141, 1544–1557 (2017). https://doi.org/10.5858/arpa.2016-0501-RA

    Article  CAS  PubMed  Google Scholar 

  25. Fokstuen, S., Makrythanasis, P., Hammar, E., Guipponi, M., Ranza, E., Varvagiannis, K., Santoni, F.A., Albarca-Aguilera, M., Poleggi, M.E., Couchepin, F., Brockmann, C., Mauron, A., Hurst, S.A., Moret, C., Gehrig, C., Vannier, A., Bevillard, J., Araud, T., Gimelli, S., Stathaki, E., Paoloni-Giacobino, A., Bottani, A., Sloan-Béna, F., Sizonenko, L.D., Mostafavi, M., Hamamy, H., Nouspikel, T., Blouin, J.L., Antonarakis, S.E.: Experience of a multidisciplinary task force with exome sequencing for Mendelian disorders. Hum. Genom. (2016). https://doi.org/10.1186/s40246-016-0080-4

    Article  Google Scholar 

  26. Monroe, G.R., Frederix, G.W., Savelberg, S.M.C., de Vries, T.I., Duran, K.J., van der Smagt, J.J., Terhal, P.A., van Hasselt, P.M., Kroes, H.Y., Verhoeven-Duif, N.M., Nijman, I.J., Carbo, E.C., van Gassen, K.L., Knoers, N.V., Hövels, A.M., van Haelst, M.M., Visser, G., van Haaften, G.: Effectiveness of whole-exome sequencing and costs of the traditional diagnostic trajectory in children with intellectual disability. Genet. Med. 18, 949–956 (2016). https://doi.org/10.1038/gim.2015.200

    Article  CAS  PubMed  Google Scholar 

  27. Bonnefond, A., Philippe, J., Durand, E., Muller, J., Saeed, S., Arslan, M., Martínez, R., Graeve, F.D., Dhennin, V., Rabearivelo, I., Polak, M., Cavé, H., Castaño, L., Vaxillaire, M., Mandel, J.-L., Sand, O., Froguel, P.: Highly sensitive diagnosis of 43 monogenic forms of diabetes or obesity through one-step PCR-based enrichment in combination with next-generation sequencing. Diabetes Care 37, 460–467 (2014). https://doi.org/10.2337/dc13-0698

    Article  CAS  PubMed  Google Scholar 

  28. Gordon, L.G., White, N.M., Elliott, T.M., Nones, K., Beckhouse, A.G., Rodriguez-Acevedo, A.J., Webb, P.M., Lee, X.J., Graves, N., Schofield, D.J.: Estimating the costs of genomic sequencing in cancer control. BMC Health Serv. Res. 20, 492 (2020). https://doi.org/10.1186/s12913-020-05318-y

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sabatini, L.M., Mathews, C., Ptak, D., Doshi, S., Tynan, K., Hegde, M.R., Burke, T.L., Bossler, A.D.: Genomic sequencing procedure microcosting analysis and health economic cost-impact analysis: a report of the Association for Molecular Pathology. J. Mol. Diagn. 18, 319–328 (2016)

    Article  Google Scholar 

  30. Sabatini, L.M., Mathews, C., Ptak, D., Doshi, S., Tynan, K., Hegde, M.R., Burke, T.L., Bossler, A.D.: Genomic sequencing procedure microcosting analysis and health economic cost-impact analysis: a report of the association for molecular pathology. J. Mol. Diagn. JMD 18, 319–328 (2016). https://doi.org/10.1016/j.jmoldx.2015.11.010

    Article  PubMed  Google Scholar 

  31. Schwarze, K., Buchanan, J., Fermont, J.M., Dreau, H., Tilley, M.W., Taylor, J.M., Antoniou, P., Knight, S.J.L., Camps, C., Pentony, M.M., Kvikstad, E.M., Harris, S., Popitsch, N., Pagnamenta, A.T., Schuh, A., Taylor, J.C., Wordsworth, S.: The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet. Med. (2019). https://doi.org/10.1038/s41436-019-0618-7

    Article  PubMed  PubMed Central  Google Scholar 

  32. Postel-Vinay, S., Boursin, Y., Massard, C., Hollebecque, A., Ileana, E., Chiron, M., Jung, J., Lee, J.S., Balogh, Z., Adam, J., Vielh, P., Angevin, E., Lacroix, L., Soria, J.-C.: Seeking the driver in tumours with apparent normal molecular profile on comparative genomic hybridization and targeted gene panel sequencing: what is the added value of whole exome sequencing? Ann. Oncol. 27, 344–352 (2016). https://doi.org/10.1093/annonc/mdv570

    Article  CAS  PubMed  Google Scholar 

  33. Drummond, M.F., Sculpher, M.J., Claxton, K., Stoddart, G.L., Torrance, G.W.: Methods for the Economic Evaluation of Health Care Programmes. Oxford University Press (2015)

    Google Scholar 

  34. Guerre, P., Hayes, N., Bertaux, A.-C.: French Costing Group: [Hospital costs estimation by micro and gross-costing approaches]. Rev. Epidemiol. Sante Publ. 66(Suppl 2), S65–S72 (2018). https://doi.org/10.1016/j.respe.2018.02.001

    Article  Google Scholar 

  35. Wetterstrand, K.A.: DNA sequencing costs: data from the NHGRI Large-Scale Genome Sequencing Program. 2016. www.genome.gov/sequencingcostsdata. Accessed 23 Dec 2019

  36. Perrier, L., Heinz, D., Baffert, S., Zou, Z., Zaleski, I.D., Rouleau, E., Wang, Q., Haddad, V., Bringuier, P., Merlio, J., Caumont, C., Lacroix, L., Marino, P., Borget, I.: Cost of genome analysis: the sanger sequencing method. Value Health. 18, A353 (2015). https://doi.org/10.1016/j.jval.2015.09.654

    Article  Google Scholar 

  37. Van Nimwegen, K.J.M., Van Soest, R.A., Veltman, J.A., Nelen, M.R., Van Der Wilt, G.J., Vissers, L.E.L.M., Grutters, J.P.C.: Is the 1000 genome as near as we think? A cost analysis of next-generation sequencing. Clin. Chem. 62, 1458–1464 (2016). https://doi.org/10.1373/clinchem.2016.258632

    Article  CAS  PubMed  Google Scholar 

  38. Tsiplova, K., Zur, R.M., Marshall, C.R., Stavropoulos, D.J., Pereira, S.L., Merico, D., Young, E.J., Sung, W.W.L., Scherer, S.W., Ungar, W.J.: A microcosting and cost–consequence analysis of clinical genomic testing strategies in autism spectrum disorder. Genet. Med. 19, 1268–1275 (2017). https://doi.org/10.1038/gim.2017.47

    Article  PubMed  Google Scholar 

  39. Taber, K.A.J., Dickinson, B.D., Wilson, M.: The promise and challenges of next-generation genome sequencing for clinical care. JAMA Intern. Med. 174, 275–280 (2014)

    Article  Google Scholar 

  40. Muir, P., Li, S., Lou, S., Wang, D., Spakowicz, D.J., Salichos, L., Zhang, J., Weinstock, G.M., Isaacs, F., Rozowsky, J., Gerstein, M.: The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol. 17, 53 (2016). https://doi.org/10.1186/s13059-016-0917-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mardis, E.R.: The $1,000 genome, the $100,000 analysis? Genome Med. 2, 84 (2010). https://doi.org/10.1186/gm205

    Article  PubMed  PubMed Central  Google Scholar 

  42. Glenn, T.C.: Field guide to next-generation DNA sequencers. Mol Ecol. Resour. 11, 759–769 (2011). https://doi.org/10.1111/j.1755-0998.2011.03024.x

    Article  CAS  PubMed  Google Scholar 

  43. Souilmi, Y., Lancaster, A.K., Jung, J.-Y., Rizzo, E., Hawkins, J.B., Powles, R., Amzazi, S., Ghazal, H., Tonellato, P.J., Wall, D.P.: Scalable and cost-effective NGS genotyping in the cloud. BMC Med. Genom. (2015). https://doi.org/10.1186/s12920-015-0134-9

    Article  Google Scholar 

  44. Sboner, A., Mu, X.J., Greenbaum, D., Auerbach, R.K., Gerstein, M.B.: The real cost of sequencing: higher than you think! Genome Biol. 12, 125 (2011). https://doi.org/10.1186/gb-2011-12-8-125

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sun, Y., Ruivenkamp, C.A.L., Hoffer, M.J.V., Vrijenhoek, T., Kriek, M., van Asperen, C.J., den Dunnen, J.T., Santen, G.W.E.: Next-generation diagnostics: gene panel, exome, or whole genome? Hum. Mutat. 36, 648–655 (2015). https://doi.org/10.1002/humu.22783

    Article  CAS  PubMed  Google Scholar 

  46. Flinter, F.: Should we sequence everyone’s genome? No. BMJ. 346, f3132 (2013). https://doi.org/10.1136/bmj.f3132

    Article  PubMed  Google Scholar 

  47. Douglas, M.P., Ladabaum, U., Pletcher, M.J., Marshall, D.A., Phillips, K.A.: Economic evidence on identifying clinically actionable findings with whole genome sequencing: a scoping review. Genet Med Off J Am Coll Med Genet 18, 111–116 (2016). https://doi.org/10.1038/gim.2015.69

    Article  Google Scholar 

  48. Caulfield, T., Evans, J., McGuire, A., McCabe, C., Bubela, T., Cook-Deegan, R., Fishman, J., Hogarth, S., Miller, F.A., Ravitsky, V., Biesecker, B., Borry, P., Cho, M.K., Carroll, J.C., Etchegary, H., Joly, Y., Kato, K., Lee, S.S.-J., Rothenberg, K., Sankar, P., Szego, M.J., Ossorio, P., Pullman, D., Rousseau, F., Ungar, W.J., Wilson, B.: Reflections on the cost of “Low-Cost” whole genome sequencing: framing the health policy debate. PLoS Biol. (2013). https://doi.org/10.1371/journal.pbio.1001699

    Article  PubMed  PubMed Central  Google Scholar 

  49. Merlevede, J., Droin, N., Qin, T., Meldi, K., Yoshida, K., Morabito, M., Chautard, E., Auboeuf, D., Fenaux, P., Braun, T., Itzykson, R., de Botton, S., Quesnel, B., Commes, T., Jourdan, E., Vainchenker, W., Bernard, O., Pata-Merci, N., Solier, S., Gayevskiy, V., Dinger, M.E., Cowley, M.J., Selimoglu-Buet, D., Meyer, V., Artiguenave, F., Deleuze, J.-F., Preudhomme, C., Stratton, M.R., Alexandrov, L.B., Padron, E., Ogawa, S., Koscielny, S., Figueroa, M., Solary, E.: Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat. Commun. 7, 10767 (2016). https://doi.org/10.1038/ncomms10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bertucci, F., Ng, C.K.Y., Patsouris, A., Droin, N., Piscuoglio, S., Carbuccia, N., Soria, J.C., Dien, A.T., Adnani, Y., Kamal, M., Garnier, S., Meurice, G., Jimenez, M., Dogan, S., Verret, B., Chaffanet, M., Bachelot, T., Campone, M., Lefeuvre, C., Bonnefoi, H., Dalenc, F., Jacquet, A., De Filippo, M.R., Babbar, N., Birnbaum, D., Filleron, T., Le Tourneau, C., André, F.: Genomic characterization of metastatic breast cancers. Nature 569, 560–564 (2019). https://doi.org/10.1038/s41586-019-1056-z

    Article  CAS  PubMed  Google Scholar 

  51. Wright, C.: PHG Foundation: Next Steps in the Sequence: The Implications of Whole Genome Sequencing for Health in the UK. PHG Foundation, Cambridge (2011)

    Google Scholar 

  52. Plan France Médecine Génomique 2025 / aviesan, https://www.aviesan.fr/aviesan/accueil/toute-l-actualite/plan-france-medecine-genomique-2025. Accessed 23 Dec 2019

  53. Nimwegen, K., van Vissers, L., Willemsen, M., Schieving, J., Veltman, J., Wil, G., van Grutters, D.J.P.: The cost-effectiveness of whole-exome sequencing in complex paediatric neurology. Value Health. 19, A695 (2016). https://doi.org/10.1016/j.jval.2016.09.1998

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Marie Breckler, who was timed during the realisation of a WES experiment. The authors acknowledge laboratory and bioinformatics teams, including Guillaume Meurice. Our study received financial support from the French National Agency for Research (ANR-10-IBHU-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Bayle.

Ethics declarations

Conflict of interest

Arnaud Bayle: None. Nathalie Droin: None. Benjamin Besse: Sponsored Research at Gustave Roussy Cancer Center: Abbvie, Amgen, AstraZeneca, Biogen, Blueprint Medicines, BMS, Celgene, Eli Lilly, GSK, Ignyta, IPSEN, Merck KGaA, MSD, Nektar, Onxeo, Pfizer, Pharma Mar, Sanofi, Spectrum Pharmaceuticals, Takeda, Tiziana Pharma. Zou Zhaomin: None. Yannick Boursin: None. Simon Rissel: None. Eric Solary: None. Ludovic Lacroix: Sponsored Research at Gustave Roussy Cancer Center: Abbott, Astrazeneca, Bayer, Beckman, Boeringer, BMS, Illumina, Genomic Health, Myriad, Novartis, Pfizer, Roche, Siemens, Thermofisher, VelaDx. Etienne Rouleau: AstraZeneca: Consulting fees—Travel, BMS: Consulting fees—Travel, Roche: consulting fees. Isabelle Borget: Roche, merck, Novartis, Janssen: consulting fees. Julia Bonastre: BMS: Travel for attending to Congress, consulting fees; MSD: consulting fees.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayle, A., Droin, N., Besse, B. et al. Whole exome sequencing in molecular diagnostics of cancer decreases over time: evidence from a cost analysis in the French setting. Eur J Health Econ 22, 855–864 (2021). https://doi.org/10.1007/s10198-021-01293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10198-021-01293-1

Keywords

Navigation