The European Journal of Health Economics

, Volume 20, Issue 7, pp 1079–1091 | Cite as

Spatial risk adjustment between health insurances: using GWR in risk adjustment models to conserve incentives for service optimisation and reduce MAUP

  • Danny WendeEmail author
Original Paper


This paper presents a new approach to deal with spatial inequalities in risk adjustment between health insurances. The shortcomings of non-spatial and spatial fixed effects in risk adjustment models are analysed and opposed against spatial kernel estimators. Theoretical and empirical evidence suggests that a reasonable choice of the spatial kernel could limit the spatial uncertainty of the modifiable area unit problem under heavy-tailed claims data, leading to more precise predictions and economically positive incentives on the healthcare market. A case study of the German risk adjustment shows a spatial risk spread of 86 Euro p.c., leading to incentives for spatial risk selection. The proposed estimator eliminates this issue and conserves incentives for services optimisation.


Health insurance Health care utilisation Risk adjustment Geographic variations Germany 

JEL Classification

H5 I18 



  1. 1.
    BMG: Statistiken über die Finanzergebnisse des Gesundheitsfonds. Bundesministerium für Gesundheit. (2018). Accessed 26 June 2018
  2. 2.
    van de Ven, W., Ellis, R.: Risk adjustment in competitive health plan markets. In: Culyer, A., Newhouse, J. (eds.) Handbook of Health Economics, pp. 755–845. North Holland, Amsterdam (2000)Google Scholar
  3. 3.
    Ash, A., Ellis, R., Pope, G., Ayanian, J., Bates, D., Burstin, H., Iezzoni, L., Mckay, E., Qu, W.: Using diagnoses to describe populations and predicts costs. Health Care Financ. Rev. 21, 7–28 (2000)PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kautter, J., Pope, G., Keenan, P.: Affordable Care Act risk adjustment: overview, context, and challenges. Medicare Medicaid Res. Rev. 4, E1–E11 (2014). CrossRefGoogle Scholar
  5. 5.
    van Veen, S.H.C.M., van Kleef, R.C., van de Ven, W.P.M.M., van Vliet, R.: Is there one measure-of-fit that fits all? A taxonomy and review of measures-of-fit for risk-equalization models. Med. Care Res. Rev. 72, 220–243 (2015). CrossRefPubMedGoogle Scholar
  6. 6.
    Ellis, R., Martins, B., Rose, S.: Risk adjustment for health plan payment. In: McGuire, T.G., van Kleef, R. (eds.) Risk Adjustment, Risk Sharing and Premium Regulation in Health Insurance Markets: Theory and Practice, pp. 1–73. Elsevier Press, Amsterdam (2017)Google Scholar
  7. 7.
    van de Ven, W., Beck, K., Buchner, F., Chernichovsky, D., Gardiol, L., Holly, A., Lamers, L., Schokkaert, E., Shmueli, A., Spycher, S., Van de Voorde, C., van Vliet, R., Wasem, J., Zmora, I.: Risk adjustment and risk selection on the sickness fund insurance market in five European countries. Health Policy 65, 75–98 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    van de Ven, W., Beck, K., Van de Voorde, C., Wasem, J., Zmora, I.: Risk adjustment and risk selection in Europe: 6 years later. Health Policy 83, 162–179 (2007). CrossRefPubMedGoogle Scholar
  9. 9.
    McGuire, T., Van Kleef, R.: Risk Adjustment, Risk Sharing and Premium Regulation in Health Insurance Markets, 1st edn. Academic Press, Cambridge (2018)Google Scholar
  10. 10.
    Drösler, S., Garbe, E., Hasford, J., Schubert, I., Ulrich, V., van de Ven, W., Wambach, A., Wasem, J., Wille, E.: Sondergutachten zu den Wirkungen des morbiditätsorientierten Risikostrukturausgleichs. Bonn (2018)Google Scholar
  11. 11.
    Drösler, S., Garbe, E., Hasford, J., Schubert, I., Ulrich, V., van de Ven, W., Wambach, A., Wasem, J., Wille, E.: Gutachten zu den regionalen Verteilungswirkungen des morbiditätsorientierten Risikostrukturausgleichs. Bonn (2018)Google Scholar
  12. 12.
    Ulrich, V., Wille, E.: Zur Berücksichtigung einer regionalen Komponente im morbiditätsorientierten Risikostrukturausgleich (Morbi-RSA). Bayreuth und Mannheim (2014)Google Scholar
  13. 13.
    Ulrich, V., Wille, E., Thüsing, G.: Die Notwendigkeit einer regionalen Komponente im morbiditätsorientierten Risikostrukturausgleich unter wettbewerbspolitischen und regionalen Aspekten. Bonn (2016)Google Scholar
  14. 14.
    Bieri, O., Köchli, H.: Regionale Unterschiede bei der Belastung durch die obligatorischen Gesundheitsausgaben. Neuchatel (2013)Google Scholar
  15. 15.
    Schokkaert, E., Van de Voorde, C.: Belgium’s health care system: should the communities/regions take it over? Or the sickness funds? Re-Bel initiative. E-book 10 (2011). Accessed 26 June 2018
  16. 16.
    Bauhoff, S.: Do health plans risk-select? An audit study on Germany’s Social Health Insurance. J. Public Econ. 96, 750–759 (2012)CrossRefGoogle Scholar
  17. 17.
    Göpffarth, D., Kopetsch, T., Schmitz, H.: Determinants of regional variation in health expenditures in Germany. Health Econ. 25, 801–815 (2016). CrossRefPubMedGoogle Scholar
  18. 18.
    Reschke, P., Lauterbach, K., Wasem, J.: Klassifikationsmodelle für Versicherte im morbiditätsorientierten Risikostrukturausgleich. IGES 7, 7–15 (2005)Google Scholar
  19. 19.
    van Kleef, R.C., van Vliet, R., van de Ven, W.: Risk equalization in The Netherlands: an empirical evaluation. Expert Rev. Pharmacoecon. Outcomes Res. 13, 829–839 (2013). CrossRefPubMedGoogle Scholar
  20. 20.
    Schokkaert, E., Van de Voorde, C.: Risk selection and the specification of the conventional risk adjustment formula. J. Health Econ. 23, 1237–1259 (2004)CrossRefPubMedGoogle Scholar
  21. 21.
    Arbia, G., Petrarca, F.: Effects of MAUP on spatial econometric models. Lett. Spat. Resour. Sci. 4, 173–185 (2011)CrossRefGoogle Scholar
  22. 22.
    Diehr, D., Yanez, A., Ash, M., Nornbrook, D.: Methods for analyzing health care utilization and costs. Annu. Rev. Public Health 20, 125–144 (1999)CrossRefPubMedGoogle Scholar
  23. 23.
    Schokkaert, E., Van de Voorde, C.: Incentives for risk selection and omitted variables in the risk adjustment formula. Ann. Écon. Stat. (2006). CrossRefGoogle Scholar
  24. 24.
    Skinner, J.: Causes and consequences of regional variations in health care. In: Pauly, M.V., Mcguire, T.G., Barros, P.P. (eds.) Handbook of Health Economics, pp. 45–93. Elsevier, Amsterdam (2012). CrossRefGoogle Scholar
  25. 25.
    Finkelstein, A., Gentzkow, M., Williams, H.: Sources of geographic variation in health care: evidence from patient migration. Q. J. Econ. 131, 1681–1726 (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ozegowski, S., Sundmacher, L.: Understanding the gap between need and utilization in outpatient care—the effect of supply-side determinants on regional inequities. Health Policy 114, 54–63 (2014). CrossRefPubMedGoogle Scholar
  27. 27.
    Busato, A., Matter, P., Künzi, B., Goodman, D.: Geographic variation in the cost of ambulatory care in Switzerland. J. Health Serv. Res. Policy 17(1), 15–23 (2012). CrossRefGoogle Scholar
  28. 28.
    Eibich, P., Ziebarth, N.: Analyzing regional variation in health care utilization using (rich) household microdata. Health Policy 114, 41–53 (2014). CrossRefPubMedGoogle Scholar
  29. 29.
    Charlton, J., Rudisill, C., Bhattarai, N., Gulliford, M.: Impact of deprivation on occurrence, outcomes and health care costs of people with multiple morbidity. J. Health Serv. Res. Policy 18, 215–223 (2013). CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Siegel, M., Mielck, A., Maier, W.: Individual income, area deprivation, and health: do income-related health inequalities vary by small area deprivation? Health Econ. 24, 1523–1530 (2015). CrossRefPubMedGoogle Scholar
  31. 31.
    Shohaimi, S., Welch, A., Bingham, S., Luben, R., Day, N., Wareham, N., Khaw, K.: Residential area deprivation predicts fruit and vegetable consumption independently of individual educational level and occupational social class: a cross sectional population study in the Norfolk cohort of the European Prospective Investigation into Cancer (EPIC-Norfolk). J. Epidemiol. Community Health 58, 686–691 (2004). CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Felder, S., Tauchmann, H.: Federal state differentials in the efficiency of health production in Germany: an artefact of spatial dependence? Eur. J. Health Econ. 14(1), 21–39 (2013). CrossRefPubMedGoogle Scholar
  33. 33.
    Anthony, D., Herndon, M., Gallagher, P., Barnato, A.E., Bynum, J., Gottlieb, D., Fisher, E., Skinner, J.: How much do patients’ preferences contribute to resource use? Health Aff. 28, 864–873 (2009). CrossRefGoogle Scholar
  34. 34.
    Laurence, B., Kate, B., Daniel, K.: Patients’ preferences explain a small but significant share of regional variation in medicare spending. Health Aff. 33, 957–963 (2014). CrossRefGoogle Scholar
  35. 35.
    Cutler, D., Skinner, J., Stern, A., Wennberg, D.: Physician beliefs and patient preferences : a new look at regional variation in health care spending. Nber working paper 19320 (2013).
  36. 36.
    Schönfelder, T., Balázs, S., Klewer, J.: Costs of DRG-upcoding due to the introduction of the diagnosis related groups in Germany. Heilberufe 61, 77–81 (2009). CrossRefGoogle Scholar
  37. 37.
    Helmchen, L., Lo Sasso, A.: How sensitive is physician performance to alternative compensation schedules? Evidence from a large network of primary care clinics. Health Econ. 19, 1300–1317 (2010). CrossRefPubMedGoogle Scholar
  38. 38.
    Bauhoff, S., Fischer, L., Göpffarth, D., Wuppermann, A.: Plan responses to diagnosis-based payment: evidence from Germany’s morbidity-based risk adjustment. J. Health Econ. 56, 397–413 (2017). CrossRefPubMedGoogle Scholar
  39. 39.
    Laffont, J.-J., Tirole, J.: A Theory of Incentives in Procurement and Regulation, 1st edn. The MIT Press, Cambridge (1993)Google Scholar
  40. 40.
    Rothschild, M., Stiglitz, J.: Equilibrium in competitive insurance markets: an essay on the economics of imperfect information. Q. J. Econ. 90(4), 629–649 (1979)CrossRefGoogle Scholar
  41. 41.
    Glazer, J., Mcguire, T.: Optimal risk adjustments in markets with adverse selection: an application to managed care. Am. Econ. Rev. 90(4), 1055–1071 (2000)CrossRefGoogle Scholar
  42. 42.
    Schramm, A.: Diagnosekodierung in der Praxis. Dissertation, TU Dresden (2016)Google Scholar
  43. 43.
    Flowerdew, R., Manley, D., Sabel, C.: Neighbourhood effects on health: does it matter where you draw the boundaries? Soc. Sci. Med. 66, 1241–1255 (2008). CrossRefPubMedGoogle Scholar
  44. 44.
    Singh, G.: Area deprivation and widening inequalities in US mortality, 1969–1998. Am. J. Public Health 93, 1137–1143 (2003). CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fleurbaey, M., Schokkaert, E.: Unfair inequalities in health and health care. J. Health Econ. 28, 73–90 (2009). CrossRefPubMedGoogle Scholar
  46. 46.
    Fotheringham, S., Brunsdon, C., Martin, C.: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley, New York (2002)Google Scholar
  47. 47.
    Kautter, J., Pope, G., Ingber, M., Freeman, S., Patterson, L., Cohen, M., Keenan, P.: The HHS-HCC risk adjustment model for individual and small group markets under the Affordable Care Act. Medicare Medicaid Res. Rev. 4, E1–E11 (2014)Google Scholar
  48. 48.
    Melorose, J., Perroy, R., Careas, S.: Verfeinerung des Risikoausgleichs auf Basis von Daten zur stationären Abrechnung, Bundesamt für Gesundheit (BAG) (2015).
  49. 49.
    ESPON: The modifiable areas unit problem. UMS 2414 RIATE (French ECP) and UMR 8504 GEOGRAPHIE-CITES. Luxembourg (2006)Google Scholar
  50. 50.
    Brunsdon, C., Fotheringham, S., Charlton, M.: Geographically weighted regression-modelling spatial non-stationarity. J. R. Stat. Soc. 47, 431–443 (2012)CrossRefGoogle Scholar
  51. 51.
    Nadaraya, E.: On estimating regression. Theory Probab. Appl. 9, 141–142 (1964). CrossRefGoogle Scholar
  52. 52.
    Watson, G.: Smooth regression analyses. Indian J. Stat. 26, 359–372 (1964)Google Scholar
  53. 53.
    Priestley, M., Chao, M.: Non-parametric function fitting. J. R. Stat. Soc. 34, 385–392 (1972)Google Scholar
  54. 54.
    Gasser, T., Müller, H.: Estimating regression functions and their derivatives by the kernel method. Scand. J. Stat. 11, 171–185 (1984)Google Scholar
  55. 55.
    Tobler, W.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234–240 (1970)CrossRefGoogle Scholar
  56. 56.
    Nakaya, T., Fotheringham, A., Brunsdon, C., Charlton, M.: Geographically weighted Poisson regression for disease association mapping. Stat. Med. 24, 2695–2717 (2005). CrossRefPubMedGoogle Scholar
  57. 57.
    Guagliardo, M.: Spatial accessibility of primary care: concepts, methods and challenges. Int. J. Health Geogr. 3, 3 (2004). CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Altman, N.: Kernel smoothing of data with correlated errors. J. Am. Stat. Assoc. 85, 749–759 (1990). CrossRefGoogle Scholar
  59. 59.
    Picard, R., Cook, R.: Cross-validation of regression models. J. Am. Stat. Assoc. 79, 575–583 (1984). CrossRefGoogle Scholar
  60. 60.
    Mei, C., Wang, N., Zhang, W.: A note on the mixed geographically weighted regression model. J. Reg. Sci. 44, 143–157 (2004)CrossRefGoogle Scholar
  61. 61.
    Smyth, G.: Partitioned algorithms for maximum likelihood and other non-linear estimation. Stat. Comput. 6, 201–216 (1996). CrossRefGoogle Scholar
  62. 62.
    Wende, D.: Anreize für regionale Risikoselektion unter dem Morbiditätsorientierten Risikostrukturausgleich. Gesundheitswesen 79, 816–820 (2017). CrossRefPubMedGoogle Scholar
  63. 63.
    Göpffarth, D.: Regionalmerkmale im Risikostrukturausgleich. Ein Beitrag zum funktionalen Wettbewerb und zu bedarfsgerechter Versorgung? BARMER GEK Gesundheitswessen aktuell 2011, pp. 16–127 (2011)Google Scholar
  64. 64.
    Vogt, V.: The contribution of locational factors to regional variations in office-based physicians in Germany. Health Policy 120, 198–204 (2016). CrossRefPubMedGoogle Scholar
  65. 65.
    GKVSV: Grundprinzipien der gesetzlichen Krankenversicherung. (2018). Accessed 10 June 2018
  66. 66.
    BVA: Verfahrensbestimmung nach § 39a Abs. 3 Satz 6 RSAV und § 41 Absatz 5 Satz 2 RSAV für die Zuweisung im Ausgleichsjahr 2018. Bundesversicherungsamt Referat 312 - Risikostrukturausgleich, Bonn. (2018). Accessed 28 June 2018
  67. 67.
    BVA: Datenzusammenstellungen und Auswertungen. (2018). Accessed 28 June 2018
  68. 68.
    Heinmueller, J.: Entropy balancing for causal effects: a multivariate reweighting method to produce balanced samples in observational studies. Polit. Anal. 46, 20–25 (2012)Google Scholar
  69. 69.
    Anselin, L.: Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr. Anal. 20, 1–17 (1988). CrossRefGoogle Scholar
  70. 70.
    Keeler, E., Carter, G., Newhouse, J.: A model of the impact of reimbursement schemes on health plan choice. J. Health Econ. 17, 297–320 (1998). CrossRefPubMedGoogle Scholar
  71. 71.
    Moran, A.: A test for the serial independence of residuals miscellanea. Biometrika 37, 178–181 (1950)CrossRefPubMedGoogle Scholar
  72. 72.
    BMG: Entwurf eines Gesetzes zur Beitragsentlastung der Versicherten in der Gesetzlichen Krankenversicherung (GKV-Versichertenentlastungsgesetz – GKV-VEG). (2018). Accessed 19 May 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wissenschaftliches Institut für Gesundheitsökonomie und Gesundheitssystemforschung (WIG2 GmbH)LeipzigGermany

Personalised recommendations