Health inequalities in the European Union: an empirical analysis of the dynamics of regional differences

Abstract

In a panel setting, we analyse the speed of (beta) convergence of (cause-specific) mortality and life expectancy at birth in EU countries between 1995 and 2009. Our contribution is threefold. First, in contrast to earlier literature, we allow the convergence rate to vary, and thereby uncover significant differences in the speed of convergence across time and regions. Second, we control for spatial correlations across regions. Third, we estimate convergence among regions, rather than countries, and thereby highlight noteworthy variations within a country. Although we find (beta) convergence on average, we also identify significant differences in the catching-up process across both time and regions. Moreover, we use the coefficient of variation to measure the dynamics of dispersion levels of mortality and life expectancy (sigma convergence) and, surprisingly, find no reduction, on average, in dispersion levels. Consequently, if the reduction of dispersion is the ultimate measure of convergence, then, to the best of our knowledge, our study is the first that shows a lack of convergence in health across EU regions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    This was pointed out by one of the anonymous reviewers.

  2. 2.

    We appreciate this definition from the other anonymous reviewers.

  3. 3.

    We have a preliminary estimation of all models allowing variation on the three levels (country/time) for all coefficients. In the specification shown, we have provided only the best final models. Results not shown can be requested from the authors.

  4. 4.

    \(\frac{ - \ln (1 - \beta )}{T} \times 100\).

  5. 5.

    That is, \(CV = {{E\left( {y_{ijt} } \right)} \mathord{\left/ {\vphantom {{E\left( {y_{ijt} } \right)} {\left( {Var\left( {y_{ijt} } \right)} \right)^{{\tfrac{1}{2}}} }}} \right. \kern-0pt} {\left( {Var\left( {y_{ijt} } \right)} \right)^{{\tfrac{1}{2}}} }},\) where both the numerator and the denominator are estimated in model (3). Also note that this calculation can be done easily only following the Bayesian approach, where it is easier to make inferences about functions of parameters and/or predictions, in particular when the function is non-linear, as in our case [i.e. the dependent variables in (3) were non-linear functions of the health variables].

References

  1. 1.

    Durlauf, S.N., Johnson, P.A., Temple, J.R.W.: Growth econometrics. In: Aghion, P., Durlauf, S.N. (eds.) Handbook of Economic Growth, pp. 555–677. Elsevier, Amsterdam (2005)

    Google Scholar 

  2. 2.

    Kenny, C.: Why are we worried about income? Nearly everything that matters is converging. World Dev. 33(1), 1–19 (2005)

    Article  Google Scholar 

  3. 3.

    Sen, A.: Mortality as an Indicator of economic success and failure. Econ. J. 108(446), 1–25 (1998)

    Article  Google Scholar 

  4. 4.

    Sen, A.: Development as Freedom. Random House, New York (1999)

    Google Scholar 

  5. 5.

    Maslow, A.: A theory of human motivation. Psychol. Rev. 50, 370–396 (1943)

    Article  Google Scholar 

  6. 6.

    Becker, G., Phillipson, T., Soares, R.: The quantity and quality of life and the evolution of world inequality. NBER working paper series, no. 9765 (2003)

  7. 7.

    Mayer, D.: Convergence clubs in cross-country life expectancy dynamics. In: van der Hoeven, R., Shorrocks, A. (eds.) Perspectives on Growth and Poverty, pp. 144–171. United Nations University Press, Tokyo (2003)

    Google Scholar 

  8. 8.

    Wagstaff, A., Paci, P., van Doorslaer, E.: On the measurement of inequalities in health. Soc. Sci. Med. 33(5), 545–557 (1991)

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Van Doorslaer, E., Wagstaff, A., Bleichrodt, H., Calonge, S., Gerdtham, U., Gerfin, M., Geurts, J., Gross, L., Häkkinen, U., Leu, R., O’Donell, O., Propper, C., Puffer, F., Rodríguez, M., Sundberg, G., Winkelhake, O.: Income-related inequalities in health: some international comparisons. J. Health Econ. 16(1), 93–112 (1997)

    Article  PubMed  Google Scholar 

  10. 10.

    Clarke, P.M., Gerdtham, U.G., Johannesson, M., Bingefors, K., Smith, L.: On the measurement of relative and absolute income-related health inequality. Soc. Sci. Med. 55, 1923–1928 (2002)

    Article  PubMed  Google Scholar 

  11. 11.

    Oliver, A., Healey, A., Le Grand, J.: Addressing health inequalities. Lancet 360, 565–567 (2002)

    Article  PubMed  Google Scholar 

  12. 12.

    Wagstaff, A.: Inequality aversion, health inequalities, and health achievement. J. Health Econ. 21, 627–641 (2002)

    Article  PubMed  Google Scholar 

  13. 13.

    Van Ourti, T.: Socio-economic inequality in ill-health amongst the elderly. Should one use current or permanent income? J. Health Econ. 22(2), 219–241 (2003)

    Article  PubMed  Google Scholar 

  14. 14.

    Van Doorslaer, E., Jones, A.M.: Inequalities in self-reported health: validation of a new approach to measurement. J. Health Econ. 22, 61–87 (2003)

    Article  PubMed  Google Scholar 

  15. 15.

    O’Donnell, O., van Doorslaer, E., Wagstaff, A., Lindelöw, M.: Analyzing Health Equity Using Household Survey Data: A Guide to Techniques and Their Implementation. The World Bank, Washington (2008)

    Google Scholar 

  16. 16.

    Fleurbaey, M., Schokkaert, E.: Unfair inequalities in health and health care. J. Health Econ. 28(1), 73–90 (2009)

    Article  PubMed  Google Scholar 

  17. 17.

    Erreygers, G., Van Ourti, T.: Measuring socioeconomic inequality in health, health care and health financing by means of rank-dependent indices: a recipe for good practice. J. Health Econ. 30(4), 685–694 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  18. 18.

    Frick, J., Zeibarth, N.: Welfare-related health inequality: does the choice of measure matter? Eur. J. Health Econ. 14(3), 431–442 (2013)

    Article  PubMed  Google Scholar 

  19. 19.

    Wagstaff, A.: Poverty and health sector inequalities. Bull. WTO 80(2), 97–102 (2002)

    Google Scholar 

  20. 20.

    Wagstaff, A.: The bounds of the concentration index when the variable of interest is binary, with an application to immunization inequality. Health Econ. 14(4), 429–432 (2005)

    Article  PubMed  Google Scholar 

  21. 21.

    Erreygers, G.: Correcting the concentration index. J. Health Econ. 28, 504–515 (2009)

    Article  PubMed  Google Scholar 

  22. 22.

    Erreygers, G.: Correcting the concentration index: a reply to Wagstaff. J. Health Econ. 28, 521–524 (2009)

    Article  Google Scholar 

  23. 23.

    Wagstaff, A.: Correcting the concentration index: a comment. J. Health Econ. 28, 516–520 (2009)

    Article  PubMed  Google Scholar 

  24. 24.

    Erreygers, G., Van Ourti, T.: Putting the cart before the horse. Comment on “The concentration index of a binary outcome revisited”. Health Econ. 20, 1161–1165 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  25. 25.

    Wagstaff, A.: The concentration of a binary outcome revisited. Health Econ. 20, 1155–1160 (2011)

    Article  PubMed  Google Scholar 

  26. 26.

    Wagstaff, A.: Reply to Guido Erreygers and Tom Van Ourti’s comment on “The concentration index of a binary outcome revisited”. Health Econ. 20, 1166–1168 (2011)

    Article  PubMed  Google Scholar 

  27. 27.

    Erreygers, G., Clarke, P., Van Ourti, T.: “Mirror, mirror, on the wall, who in this land is fairest of all?”—distributional sensitivity in the measurement of socioeconomic inequality of health. J. Health Econ. 31, 257–270 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  28. 28.

    Wennberg, J., Gittelsohn, A.: Small area variations in health care delivery. Science 182(4117), 1102–1108 (1973)

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Myrdal, G.: Economic Theory and Underdeveloped Regions. Duckworth, London (1957)

    Google Scholar 

  30. 30.

    Friedmman, J.: Regional Development Policy: A Case Study of Venezuela. MIT Press, Cambridge (1966)

    Google Scholar 

  31. 31.

    Keeble, D., Oxford, J., Walker, S.: Periphery Regions in a Community of Twelve Member States. EC Official Publications, Luxembourg (1988)

    Google Scholar 

  32. 32.

    Krugman, P.: Increasing returns and economic geography. J. Polit. Econ. 99(3), 483–499 (1991)

    Article  Google Scholar 

  33. 33.

    Felder, S., Tauchmann, H.: Federal state differentials in the efficiency of health production in Germany: an artefact of spatial dependence? Eur. J. Health Econ. 14, 21–39 (2013)

    Article  PubMed  Google Scholar 

  34. 34.

    Paas, T., Kuusk, A., Schlitte, F., Võrk, A.: Econometric Analysis of Income Convergence in Selected EU Countries and Their NUTS 3 Level Regions. University of Tartu, Tartu (2007)

    Google Scholar 

  35. 35.

    Barro, R., Sala-i-Martin, X.: Economic Growth. MIT Press, Boston (1991)

    Google Scholar 

  36. 36.

    Sala-i-Martin, X.: The classical approach to convergence analysis. Econ. J. 106(437), 1019–1036 (1996)

    Article  Google Scholar 

  37. 37.

    Sala-i-Martin, X.: Regional cohesion: evidence and theories of regional growth and convergence. Eur. Econ. Rev. 40(6), 1325–1352 (1996)

    Article  Google Scholar 

  38. 38.

    Baumol, W.: Productivity growth, convergence, and welfare: what the long run data show. Am. Econ. Rev. 76(5), 1072–1085 (1986)

    Google Scholar 

  39. 39.

    Barro, R., Sala-i-Martin, X.: Convergence. J. Polit. Econ. 100(2), 223–251 (1992)

    Article  Google Scholar 

  40. 40.

    Fischer, M., Stirböck, C.: Regional income convergence in the enlarged Europe, 1995–2000: a spatial econometric perspective. ZEW discussion paper no. 04–42 (2004). http://www.econstor.eu/bitstream/10419/24051/1/dp0442.pdf. Accessed 19 Jan 2013

  41. 41.

    Quah, D.: Galton’s fallacy and the convergence hypothesis. Scand. J. Econ. 95, 427–443 (1993)

    Article  Google Scholar 

  42. 42.

    Preston, S.: The changing relation between mortality and level of economic development. Popul. Stud. 29, 231–248 (1975)

    Article  CAS  Google Scholar 

  43. 43.

    Barro, R.: Economic growth in a cross section of countries. Q. J. Econ. 106(2), 407–443 (1991)

    Article  Google Scholar 

  44. 44.

    Pritchett, L., Summers, L.: Wealthier is healthier. J. Hum. Resour. 31(4), 842–868 (1996)

    Article  Google Scholar 

  45. 45.

    Anand, S., Ravallion, M.: Human development in poor countries: on the role of private incomes and public services. J. Econ. Perspect. 7(1), 133–150 (1993)

    Article  Google Scholar 

  46. 46.

    Wilson, C.: On the scale of global demographic convergence 1950-2000. Popul. Dev. Rev. 27(1), 155–171 (2011)

    Article  Google Scholar 

  47. 47.

    Glei, D.A., Meslé, F., Vallin, J.: Diverging trends in life expectancy at age 50: A look at causes of death. In: Eileen, M., Crimins, S.H.P., Cohen, B. (eds.) International Differences in Mortality at Older Ages: Dimensions and Sources, pp. 103–151. National Academies Press, Washington (2010)

    Google Scholar 

  48. 48.

    Edwards, R.D.: Changes in world inequality in length of life: 1970–2000. Popul. Dev. Rev. 37(3), 499–528 (2011)

    Article  PubMed  Google Scholar 

  49. 49.

    Clark, R.: World health inequality: convergence, divergence, and development. Soc. Sci. Med. 72(4), 617–624 (2011)

    Article  PubMed  Google Scholar 

  50. 50.

    Eggleston, K.N., Fuchs, V.R.: The new demographic transition: most gains in life expectancy now realized late in life. J. Econ. Perspect. 26(3), 137–156 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  51. 51.

    Edwards, R.D., Tuljapurkar, S.: Inequality in life spans and a new perspective on mortality convergence across industrialized countries. Popul. Dev. Rev. 31(4), 645–674 (2005)

    Article  Google Scholar 

  52. 52.

    d’Albis, H., Esso, L.J., Pifarré, H.: Mortality convergence across high-income countries: An econometric approach. Documents de Travail du Centre d’Economie de la Sorbonne, Université Paris 1, 2012.76 (2012)

  53. 53.

    Monfort, P.: Convergence of EU regions. Measures and evolution. European Union, regional policy working paper 01/2008 (2008)

  54. 54.

    Eckey, H.F., Türk, M.: Convergence of EU-Regions: A literature review. Discussion paper at the Economic Department of the University of Kassel, 86/06, Kassel (2006)

  55. 55.

    Maynou, L., Saez, M., Bacaria, J.: Analysis of regional convergence in the euro area (1990–2010) (in Spanish). Ekonomiaz 82, 200–217 (2013)

    Google Scholar 

  56. 56.

    Eurostat database http://epp.eurostat.ec.europa.eu/portal/page/portal/region_cities/regional_statistics/data/database

  57. 57.

    Baumont, C., Ertur, C., Le Gallo, J.: The European Regional Convergence Process, 1980–1995: Do Spatial Regimes and Spatial Dependence Matter? EconWPA series on econometrics, number 0207002 (2002). http://econpapers.repec.org/paper/wpawuwpem/0207002.htm. Accessed 19 Jan 2013

  58. 58.

    Borrell, C., Marí-Dell’olmo, M., Serral, G., Martínez-Beneito, M., Gotsens, M., MEDEA Members: Inequalities in mortality in small areas of eleven Spanish cities (the multicenter MEDEA project). Health Place 16(4), 703–711 (2010)

    Article  PubMed  Google Scholar 

  59. 59.

    Puigpinós-Riera, R., Marí-Dell’Olmo, M., Gotsens, M., Borrell, C., Serral, G., Ascaso, C., Calvo, M., Daponte, A., Domínguez-Berjón, F.M., Esnaola, S., Gandarillas, A., López-Abente, G., Martos, C.M., Martínez-Beneito, M.A., Montes-Martínez, A., Montoya, I., Nolasco, A., Pasarín, I.M., Rodríguez-Sanz, M., Saez, M., Sánchez-Villegas, P.: Cancer mortality inequalities in urban areas: a Bayesian small area analysis in Spanish cities. Int. J. Health Geogr. 10, 6 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  60. 60.

    Salcedo, N., Saez, M., Bragulat, B., Saurina, C.: Does the effect of gender modify the relationship between deprivation and mortality? BMC Public Health 12, 574 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  61. 61.

    Kondo, N., Sembajwe, G., Kawachi, I., van Dam, R., Subramanian, S., Yamagata, Z.: ncome inequality, mortality, and self rated health: meta-analysis of multilevel studies. Br. Med. J. 339, b4471 (2009)

    Article  Google Scholar 

  62. 62.

    Hsiao, C., Pesaran, M.H.: Random coefficient panel data models. In: Mátyás, L., Sevestre, P. (eds.) The Econometrics of Panel Data. Advances Studies in Theoretical and Applied Econometrics, vol. 46, pp. 185–213. Springer, Berlin (2008)

    Google Scholar 

  63. 63.

    Pinheiro, J.C., Bates, D.: Mixed-Effects Models in S and S-Plus. Springer, New York (2000)

    Google Scholar 

  64. 64.

    R-INLA project http://www.r-inla.org/. Accessed 2 Aug 2013

  65. 65.

    Lawson, A.B., Browne, W.J., Vidal-Rodeiro, C.L.: Disease Mapping with WinBUGS and MLwiN. Wiley, Chichester (2003)

    Google Scholar 

  66. 66.

    Barceló, M.A., Saez, M., Saurina, C.: Spatial variability in mortality inequalities, socioeconomic deprivation, and air pollution in small areas of the Barcelona Metropolitan Region, Spain. Sci. Total Environ. 407(21), 5501–5523 (2009)

    Article  PubMed  Google Scholar 

  67. 67.

    Lindgren, F., Rue, H., Lindström, J.: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach (with discussion). J. R. Stat. Soc. Ser. B 73(4), 423–498 (2011). http://www.math.ntnu.no/~hrue/spde-jrssb.pdf. Accessed 19 Jan 2013

  68. 68.

    Stein, M.L.: Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999)

    Google Scholar 

  69. 69.

    Nickell, S.: Biases in dynamic models with fixed effects. Econometrica 49(6), 1417–1426 (1981)

    Article  Google Scholar 

  70. 70.

    Anderson, T.W., Hsiao, C.: Estimation of dynamic models with error components. J. Am. Stat. Soc. 76, 598–606 (1981)

    Article  Google Scholar 

  71. 71.

    Anderson, T.W., Hsiao, C.: Formulation and estimation of dynamic models using panel data. J. Econom. 18, 47–82 (1982)

    Article  Google Scholar 

  72. 72.

    Arellano, M., Bond, S.: Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277–297 (1991)

    Article  Google Scholar 

  73. 73.

    Holtz-Eakin, D., Newey, W., Rosen, H.S.: Estimating vector autoregressions with panel data. Econometrica 56, 1371–1395 (1988)

    Article  Google Scholar 

  74. 74.

    Blundell, R., Bond, S.: Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 87, 115–143 (1998)

    Article  Google Scholar 

  75. 75.

    Hsiao, C., Pesaran, M.H., Tahmiscioglu, A.K.: Bayes estimation of short-run coefficients in dynamic panel data models. In: Hsiao, C., Lee, L.F., Lahiri, K., Pesaran, M.H. (eds.) Analysis of Panels and Limited Dependent Variables Models, pp. 268–296. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  76. 76.

    Heckman, J.: Heterogeneity and state dependence. In: Rosen, S. (ed.) Studies in Labor Markets. University of Chicago Press, Chicago (1981)

    Google Scholar 

  77. 77.

    Heckman, J.: Statistical models for discrete panel data. In: Manski, C.F., McFadden, D. (eds.) Structural Analysis of Discrete Data with Econometric Applications. MIT Press, Cambridge (1981)

    Google Scholar 

  78. 78.

    Zhang, P., Small, D.: Bayesian inference for random coefficient dynamic panel data models. Department of Statistics, The Wharton School, University of Pennsylvania (2006). http://www-stat.wharton.upenn.edu/~dsmall/randomcoefficientmodel_submittedversion.pdf. Accessed 26 Jul 2013

  79. 79.

    Maynou, L., Saez, M.: Bayesian Estimation of Small Dynamic Panel Data Models. Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona (2013)

    Google Scholar 

  80. 80.

    Raftery, A.: Bayesian model selection in social research. Sociol. Methodol. 25, 111–163 (1995)

    Article  Google Scholar 

  81. 81.

    Fernández, C., Ley, E., Steel, M.: Model uncertainty in cross-country growth regressions. J. Appl. Econom. 16, 563–576 (2001)

    Article  Google Scholar 

  82. 82.

    Sala-i-Martin, X., Doppelhofer, G., Miller, R.: Determinants of long-term growth: a Bayesian averaging of classical estimates (BACE) approach. Am. Econ. Rev. 94(4), 813–835 (2004)

    Article  Google Scholar 

  83. 83.

    Moral-Benito, E.: Determinants of economic growth: a Bayesian panel data approach. Documento de trabajo 1031. Banco de España, Madrid (2010)

  84. 84.

    Rendon, S.R.: Fixed and random effects in classical and Bayesian regression. Oxf. Bull. Econ. Stat. 75(3), 460–476 (2012)

    Article  Google Scholar 

  85. 85.

    Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. Ser. B 71, 319–392 (2009). http://www.math.ntnu.no/~hrue/r-inla.org/papers/inla-rss.pdf. Accessed 19 Jan 2013

  86. 86.

    Blangiardo, M., Cameletti, M., Baio, G., Rue, H.: Spatial and spatio-temporal models with R-INLA. Spat Spatiotemporal Epidemiol. 4, 33–49 (2013)

    Article  PubMed  Google Scholar 

  87. 87.

    R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2012). http://www.R-project.org. Accessed 9 Dec 2012

  88. 88.

    Šlander, S., Ogorevc, M.: Labour costs convergence in the EU: spatial econometrics approach. Privred. Kret. Ekon. Polit, 122, 27–51 (2010). http://www.hrcak.srce.hr/file/80468. Accessed 26 Jan 2013

  89. 89.

    Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Stat. Soc. Ser. B 36, 192–236 (1974)

    Google Scholar 

  90. 90.

    Cressie, N.A.: Statistics for Spatial Data. Wiley, New York (1993)

    Google Scholar 

  91. 91.

    Kelsall, J., Wakefield, J.: Modeling spatial variation in disease risk: a geostatistical approach. J. Am. Stat. Assoc. 97(459), 692–701 (2002)

    Article  Google Scholar 

  92. 92.

    Simpson, D., Illian, J., Lindgren, F., Sørbye, S.H., Rue, H.: Going off grid: Computationally efficient inference for log-Gaussian Cox processes. Preprint statistics no. 10/2011. Norwegian University of Science and Technology, Trondheim (2011). http://www.r-inla.org/papers. Accessed 23 Mar 2013

  93. 93.

    Rue H, Held L. Gaussian Markov Random Fields. Chapman & Hall/CRC, Boca Raton (2005)

Download references

Acknowledgments

This work was partly funded by the Short Term Grant Abroad for PhD European, CIBER of Epidemiology and Public Health (CIBERESP), Spain, benefiting Laia Maynou, who is also a beneficiary of the Grant for Universities and Research Centres for the Recruitment of New Research Personnel (FI-DGR 2012), AGAUR, Government of Catalonia (Generalitat de Catalunya). We appreciate the comments of the attendees at The Health Economists’ Study Group Summer 2013 Conference on 26–28 June 2013 at the University of Warwick, UK, at the New Directions in Welfare III 2013 OECD-Universities Joint Conference on 3–5 July 2013 in Paris, France, and at the 53rd European Regional Science Association on 27–31 August 2013, Palermo, Italy, where a preliminary version of this work was presented. We also appreciate the very valuable comments by the members of the Department of Economics, City University London, UK, and in particular Mireia Jofre-Bonet on a previous version of this article. We appreciate the comments of two anonymous reviewers that, without doubt, helped us improve our work.

Conflict of interest

There are no conflicts of interest for any of the authors. All authors freely disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within 3 years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marc Saez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maynou, L., Saez, M., Bacaria, J. et al. Health inequalities in the European Union: an empirical analysis of the dynamics of regional differences. Eur J Health Econ 16, 543–559 (2015). https://doi.org/10.1007/s10198-014-0609-1

Download citation

Keywords

  • Health convergence
  • Beta convergence
  • Sigma convergence
  • Catching-up
  • Spatiotemporal modelling
  • Bayesian models
  • Integrated nested Laplace approximation

JEL Classification

  • I14
  • I15
  • C33
  • C11