Abstract
Objective
The aim of the study was to quantify the impact of specific medical services in the ambulatory sector (SA) on hospitalizations for ambulatory care sensitive conditions (ACSCs), in order to be able to assess whether and under what conditions specific ambulatory treatments could serve to lower the hospitalization rate.
Data source
The analysis is based on administrative data showing the complete provision of medical services in the ambulatory sector in Germany and data from other sources. The data were provided by the National Association of Statutory Health Insurance Physicians, the Federal Statistical Agency, the Federal Office of Construction and Regional Planning, and the Federal Insurance Agency.
Study design
The impact of an increase in specific medical services on hospitalizations for ACSCs was estimated using linear spatial models at the level of the 413 German counties and county boroughs for the years 2007 and 2008. To allow for an undistorted estimation of the coefficients, SA and physician density were instrumented using a two-stage ‘least squares’ approach. The SA and the rate of hospitalizations for ACSCs were age-standardized. In the models, a well-defined set of covariates was controlled for.
Principal findings
According to the models, an additional € spent on ACSC treatment decreases the rate of hospitalizations for ACSCs for women and men up to an annual Uniform Value Scale For Doctors’ Fees point value of approximately 6,891 and 5,735, respectively. The correlation is not linear but, as suspected, exhibits diminishing marginal returns.
Conclusions
Our models suggest that additional medical services reduce the rate of hospitalizations for ACSCs but that this correlation depends on the absolute level of office-based services in a county, all covariates being held equal. Ceteris paribus counties with a very high volume of services exhibit ‘flat-of-the-curve medicine’, while counties with a very low current level of specific medical services benefit most from an increase in those specific services.
Similar content being viewed by others
Notes
Although the inclusion of the spatial lag solves the problem of omitted regressors, it also creates an endogeneity problem since a weighted average of endogenous values does not represent an exogenous regressor. This endogeneity problem can also be solved by an instrument variable approach, whereby spatial lags of the exogenous values serve as instruments for the spatial lag of the dependent variables.
References
Ansari, Z., Laditka, J.N., Laditka, S.B.: Access to health care and hospitalization for ambulatory care sensitive conditions. Med. Care Res. Rev. 63(6), 719–741 (2006)
Anselin, L.: Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Dordrecht (1988)
Augurzky, B., Kopetsch, T., Schmitz, H.: What accounts for the regional differences in the utilisation of hospitals in Germany? Eur. J. Health Econ. (2012). doi:10.1007/s10198-012-0407-6
Billings, J., Zeitel, L., Lukomnik, J., Carey, T.S., Blank, A.E., Newman, L.: Impact of socioeconomic status on hospital use in New York City. Health Aff. 12(1), 162–173 (1993)
Bindman, A.B., Grumbach, K., Osmond, D., Komaromy, M., Vranizan, K., Lurie, N., Billings, J., Stewart, A.: Preventable hospitalizations and access to health care. J. Am. Med. Assoc. 274(4), 305–311 (1995)
Brown, A., Goldacre, M.J., Hicks, N., Rourke, J.T., McMurty, R.Y., Brown, J.D., Anderson, G.M.: Hospitalization for ambulatory care-sensitive conditions: a method for comparative access and quality studies using routinely collected statistics. Can. J. Publ. Health 92(2), 155–159 (2001)
Cameron, A.C., Trivedi, P.K.: Microeconometrics: Methods and Applications. Cambridge University Press, New York (2005)
Caminal, J., Starfield, B., Sanchez, E., Casanova, C., Morales, M.: The role of primary care in preventing ambulatory care sensitive conditions. Eur. J. Publ. Health 14(3), 246–251 (2004)
Evans, R.: Supplier-Induced Demand: Some empirical evidence and implications. In: Perlman, M. (ed.) The Economics of Health and Medical Care: Proceedings of a Conference Held by the International Economic Association at Tokyo, pp. 162–173. Palgrave Macmillan, New York (1974)
Falik, M., Needleman, J., Well, B.L., Korb, J.: Ambulatory care sensitive hospitalizations and emergency visits: experiences of Medicaid patients using federally qualified health centers. Med. Care 39(6), 551–561 (2001)
Freund, T., Campbell, S.: Strategies for reducing potentially avoidable hospitalizations for ambulatory care-sensitive conditions. Ann. Fam. Med. 11, 363–370 (2013)
Fuchs, V.: More variation in use of care, more flat-of-the-curve medicine. Health Aff. 23, 104–107 (2004)
Greenland, S., Robin, J.M.: Empirical-Bayes adjustments for multiple comparisons are sometimes useful. Epidemiology 2(4), 244–251 (1991)
Greineder, D.K., Loane, K.C., Parks, P.: Reduction in resource utilization by an asthma outreach program. Arch. Pediatr. Adolesc. Med. 149(4), 415–420 (1995)
Hausman, J.A.: Specification tests in econometrics. Econometrica 46(6), 1251–1271 (1978)
Jordan, S., von der Lippe E.: Angebote der Prävention: Wer nimmt teil? In: GBE-Kompakt 3(5) (ed.) Robert Koch-Institute, Berlin (2012)
Labelle, R., Stoddart, G., Rice, T.: A re-examination of the meaning and importance of supplier induced demand. J. Health Econ. 13(3), 347–368 (1994)
Laditka, J.N., Laditka, S.B., Probst, J.C.: Health care access in rural areas: evidence that hospitalizations for ambulatory care-sensitive conditions in the United States may increase with the level of rurality. Health Place 15(3), 761–770 (2009)
Laditka, J.N.: Physician supply, physician diversity, and outcomes of primary care for older persons in the United States. Health Place 10(3), 231–244 (2004)
Martikainen, P., Ferrie, J.: Populations at Special Health Risk: Unemployed: Unemployment and Job Insecurity. In: Heggenhougen, H.K., Quah, S.R. (eds.) International Encyclopedia of Public Health, pp. 268–276. Elsevier, San Diego (2008)
Millman, M.: Access to Health Care in America. National Academies Press, Washington, D.C (1993)
Purdy, S., Griffin, T., Salisbury, C., Sharp, C.: Ambulatory care sensitive conditions: terminology and disease coding need to be more specific to aid policy makers and clinicians. Publ. Health 123(2), 169–173 (2009)
Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI): Mengenentwicklung und Mengensteuerung stationärer Leistungen, Endbericht Forschungsprojekt im Auftrag des GKV-Spitzenverbandes. RWI-Projektbericht. Essen, Rheinisch-Westfälisches Institut für Wirtschaftsforschung (2012)
Ricketts, T.C., Randolph, R., Howard, H.H., Pathman, D., Carey, T.: Hospitalization rates as indicators of access to primary care. Health Place 7(1), 27–38 (2001)
Robert-Koch Institute (RKI): Daten und Fakten: Ergebnisse der Studie “Gesundheit in Deutschland aktuell 2010“. Beiträge zur Gesundheitsberichterstattung des Bundes. Rober-Koch Institute, Berlin (2012)
Sachverständigenrat zur Begutachtung der Entwicklung im Gesundheitswesen (SVR). Wettbewerb an der Schnittstelle zwischen ambulanter und stationärer Gesundheitsversorgung, Sondergutachten 2012. Baden–Baden (2012)
Sanderson, C., Dixon, J.: Conditions for which onset or hospital admission is potentially preventable by timely and effective ambulatory care. J. Health Serv. Res. Policy 5(4), 222–230 (2000)
Solberg, L.I., Peterson, K.E., Ellis, R.W., et al.: The Minnesota project: a focused approach to ambulatory quality assessment. Inquiry 27(4), 359–367 (1990)
Staiger, D.O., Stock, J.H.: Instrumental variables regression with weak instruments. Econometrica 65(3), 557–586 (1997)
Sundmacher, L.: Trends and levels of avoidable mortality among districts: healthy benchmarking in Germany. Health Policy 109(3), 281–289 (2012)
Sundmacher, L., Kimmerle, J., Latzitis, N., Busse, R.: Vermeidbare Sterbefälle in Deutschland: räumliche Verteilung und regionale Konzentrationen. Gesundheitswesen 73(4), 229–237 (2011)
Sundmacher, L., Busse, R.: The impact of physician supply on avoidable cancer mortality in Germany. Health Policy 103, 53–62 (2011)
Weissman, J.S., Gatsonis, C., Epstein, A.M.: Rates of avoidable hospitalization by insurance status in Massachusetts and Maryland. J. Am. Med. Assoc. 268(17), 2388–2394 (1992)
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Empirical Bayes adjustment
Depending on the size of a county’s or county borough’s population, the rate of hospitalizations for ACSCs are subject to random fluctuations of, in some cases, considerable magnitude. The empirical Bayes approach weights the rate of hospitalizations for ACSCs according to its expected random errors as follows [13]:
where RANGE represents the range of the ACSCs rate in a county or county borough i and StdE the standard error. The empirical Bayes adjustment thus causes rates of hospitalizations for ACSCs that are based on a small number of ACSCs with a high range to be given a lower weighting in the estimation.
Rights and permissions
About this article
Cite this article
Sundmacher, L., Kopetsch, T. The impact of office-based care on hospitalizations for ambulatory care sensitive conditions. Eur J Health Econ 16, 365–375 (2015). https://doi.org/10.1007/s10198-014-0578-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10198-014-0578-4