Skip to main content

Advertisement

Log in

Organisational determinants of production and efficiency in general practice: a population-based study

  • Original Paper
  • Published:
The European Journal of Health Economics Aims and scope Submit manuscript

Abstract

Objective

Shortage of general practitioners (GPs) and an increased political focus on primary care have enforced the interest in efficiency analysis in the Danish primary care sector. This paper assesses the association between organisational factors of general practices and production and efficiency.

Methods

We assume that production and efficiency can be modelled using a behavioural production function. We apply the Battese and Coelli (Empir Econ 20:325–332, 1995) estimator to accomplish a decomposition of exogenous variables to determine the production frontier and variables determining the individual GPs distance to this frontier. Two different measures of practice outputs (number of office visits and total production) were applied and the results compared.

Results

The results indicate that nurses do not substitute GPs in the production. The production function exhibited constant returns to scale. The mean level of efficiency was between 0.79 and 0.84, and list size was the most important determinant of variation in efficiency levels.

Conclusions

Nurses are currently undertaking other tasks than GPs, and larger practices do not lead to increased production per GP. However, a relative increase in list size increased the efficiency. This indicates that organisational changes aiming to increase capacity in general practice should be carefully designed and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In principle, citizens can choose to be outside the list system but as less than 2% of the population has done this, it is of no analytical importance in the present study.

  2. This is due to the fact that log transformation does not apply when some inputs have the value 0.

  3. A third relevant input parameter is capital or technological endowment. Unfortunately, data on technological equipment in general practice are not available. Omission of this input parameter is not perceived as majorly problematic as the level of technological endowments is probably relatively low in Danish general practices. Technological equipment mostly consists of simple diagnostic equipments such as lung function spirometry machines, urin stix and virus test, and the variation across practices is likely to be minor. It should be noted that the presence of nurses may pick up some of the effect if there is correlation between employing nurses and level of investments in diagnostic equipment.

  4. One often used approach to assessing determinants of efficiency has been to apply a two-step approach where the efficiency estimates are estimated in step 1 where after these estimates are regressed on a set of variables assumed to influence efficiency. This approach has been widely criticised, and various solutions have been suggested among these the Batese and Coelli one-step maximum-likelihood estimator [3]; [8] (see [21] chapter 7 for a good overview of other solutions).

  5. From (3), the marginal productivities can be derived at the mean of the involved variables as \( f_{\text{GP}}^{'} = \hat{\beta }_{1} + \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} \hat{\beta }_{3} (\overline{\text{GP}} )^{{ - \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} }} + \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} \hat{\beta }_{5} (\overline{\text{GP}} )^{{ - \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} }} (\overline{\text{NS}} )^{\raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} } \) and \( f_{\text{NS}}^{'} = \hat{\beta }_{2} + \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} \hat{\beta }_{4} (\overline{\text{NS}} )^{{ - \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} }} + \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} \hat{\beta }_{5} (\overline{\text{NS}} )^{{ - \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} }} (\overline{\text{GP}} )^{\raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} } \) respectively.

  6. Thurston and Libby refer to two different approaches to calculating elasticities. In one approach, the elasticity is evaluated at the mean level of production as defined in (6), while the other approach involves the estimation of elasticities for each GP. In the latter, the elasticity is then presented as the mean elasticity between GPs, i.e. \( \eta_{\text{GP,NS}} = \frac{1}{N}\sum\nolimits_{i = 1}^{N} {\frac{{q_{i} \cdot f_{\text{GP,NS}}^{''} }}{{f_{\text{GP}}^{'} \cdot f_{\text{NS}}^{'} }}} \). This approach has the advantage that confidence intervals can be derived directly without the use of bootstrapping [41]. However, it has the disadvantage that the elasticity can only be calculated if the GP has a positive value of both inputs. If this is not the case, it is not possible to derive the first-order derivatives and hence \( \eta_{\text{GP,NS}} \) cannot be derived. This entails that GPs that do not employ nurses will not be included in this approach. We use both approaches and compare the results.

  7. Notice that the minimum value of weekly nurse hours is 0. This is because 48% of the practices did not employ nurses.

  8. The effect of the various GP- and practice-specific variables on the efficiency is shown in the lower part of Table 3. Notice that u in Eq. 2 and hence in Table 3 should be defined as inefficiency as it is estimated as the distance to the (optimal) production frontier. Hence, a positive sign of the beta coefficients in the lower part of Table 3 indicates that the specific variable increases inefficiency and hence reduced efficiency.

References

  1. Ackerberg, D., Benkard, L., Berry, S., Pakes, A.: Econometric tools for analyzing market outcomes. In: Heckman, J.J., Leamer, E. (eds.) Handbook of econometrics, vol. 6. Elsevier Science, Amsterdam (2007)

    Google Scholar 

  2. Andersen, L.B., Serritzlew, S.: Økonomiske incitamenter, professionelle normer og effentlig service: taxameterstyring i teori og praksis. Politica 38(4), 410–425 (2006)

    Google Scholar 

  3. Battese, G., Coelli, T.J.: A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 20, 325–332 (1995)

    Article  Google Scholar 

  4. Bech, M., Lauridsen, J.T.; Becker Hansen, B.; Sørensen, T. Udbudspåvirkning af forbruget i almen lægepraksis: supplier induced demand in general practice. Norsk Økonomisk Tidsskrift. 122(2), 20–35 (2009)

    Google Scholar 

  5. Billings, J., Zeitel, L., Lukomnik, J., Carey, T.S., Blank, A.E., Newman, L.: Impact of socioeconomic status on hospital use in New York City. Health Aff. 12, 162–173 (1993)

    Article  CAS  Google Scholar 

  6. Champers, R.G.: Applied Production Analysis. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  7. Coelli, T.J.: A guide to FRONTIER Version 4.1: A Computer Program for Stochastic Frontier Production and Cost Function Estimation. Department of Econometrics, University of New England, Armidale, NSW 2351, Australia, 7/96 (1996)

  8. Conrad, D.A., Sales, A., Liang, S.Y., Chaudhuri, A., Maynard, C., Pieper, L., Weinstein, L., Gans, D., Piland, N.: The impact of financial incentives on physician productivity in medical groups. Health Serv. Res. 37(4), 885–906 (2002)

    Article  PubMed  Google Scholar 

  9. Cordero-Ferrera, J.M., Crespo-Cebada, E., Murillo-Zamorano, L.R.: Measuring technical efficiency in primary health care: the effect of exogenous variables on results. J. Med. Syst. 35(4), 545–554 (2011)

    Article  PubMed  Google Scholar 

  10. Dusheiko, M., Gravelle, H., Jacobs, R., Smith, P.: The effect of financial incentives on gatekeeping doctors: evidence from a natural experiment. J. Health Econ. 25(3), 449–478 (2006)

    Article  PubMed  Google Scholar 

  11. Escarce, J.J., Pauly, M.V.: Physician opportunity costs in physician practice cost functions. J. Health Econ. 17(2), 129–151 (1998)

    Article  PubMed  CAS  Google Scholar 

  12. Gaynor, M., Gertler, P.: Moral hazard and risk spreading in partnerships. Rand J. Econ. 26(4), 591–613 (1995)

    Article  Google Scholar 

  13. Gaynor, M., Pauly, M.V.: Compensation and productive efficiency in partnerships: evidence from medical group practice. J. Polit. Econ. 98(3), 544–573 (1990)

    Article  Google Scholar 

  14. Giuffrida, A.: Productivity and efficiency changes in primary care: a Malmquist index approach. Health Care Manag. Sci. 2(1), 11–26 (1999)

    Article  PubMed  CAS  Google Scholar 

  15. Gunning, T.S., Sickles, R.C.: A multi-product cost function for physician private practices. J. Prod. Anal. 35(2), 119–128 (2011)

    Article  Google Scholar 

  16. Hansen, J., Madsen, M. H., Kjellberg, P.K.: Effektiv Organisering af Almen Praksis. Dansk Sundhedsinstitut (2008)

  17. Hicks, J.R.: Elasticities of substitution again: substitutes and complements. Oxf. Econ. Papers 20, 289–296 (1970)

    Google Scholar 

  18. Iversen, T.: The effects of a patient shortage on general practitioners’ future income and list of patients. J. Health Econ. 23(4), 673–694 (2004)

    Article  PubMed  Google Scholar 

  19. Jacobs, R., Smith, P.C., Street, A.: Measuring Efficiency in Health Care. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  20. Jarman, B.: Underprivileged areas: validation and distribution od scores. Br. Med. J. 289(6458), 1587–1592 (1984)

    Article  CAS  Google Scholar 

  21. Kumbhakar, S.C., Lovell, C.A.K.: Stochastic Frontier Analysis. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  22. Laurant, M., Reeves, D., Hermens, R., Braspenning, J., Grol, R., Sibbald, B.: Substitution of doctors by nurses in primary care. Cochrane. Database. Syst.Rev. 2, CD001271 (2005)

  23. Lippi Bruni, M., Nobilio, L., Ugilini, C.: Economic incentives in general practice: the impact of pay-for-compliance programmes on diabetes care. Health Policy (in press) (2009)

  24. Ministeriet for Sundhed og Forebyggelse: Almen Praksis’ rolle i fremtidens sundhedsvæsen, Ministeriet for Sundhed og Forebyggelse (2008)

  25. Murillo-Zamorano, L.R., Petraglia, C.: Technical efficiency in primary health care: does quality matter? Euro. J. Health Econ. 12(2), 115–125 (2011)

    Article  Google Scholar 

  26. Naylor, M.D., Kurtzman, E.T.: The role of nurse practitioners in reinventing primary care. Health Aff. 29(5), 893–899 (2010)

    Article  Google Scholar 

  27. Newhouse, J.P.: The economics of group practice. J Human Resour 8(Winter), 37–56 (1973)

    Article  Google Scholar 

  28. Olsen, K.R., Sørensen, T.H., Gyrd-Hansen, D.: Sammenhæng mellem produktivitet, listestørrelsen, patient og praksiskarakteristika i Almen Praksis. Dan. Med. Bull. 172(16), 1224 (2010)

    Google Scholar 

  29. Praktiserende Lægers Organisation: Praksistælling 2005. PLO, København (2006)

    Google Scholar 

  30. Reinhardt, U.E.: A production function for physician services. Rev. Econ. Stat. 54, 55–66 (1972)

    Article  Google Scholar 

  31. Reinhardt, U.E., Pauly, M.V., Held, P.J.: Financial Incentives and the economics performance of group practitioners. In: Held, P.J., Reinhardt, U.E. (eds.) Analysis of Economic Performance in Medical Group Practices. Mathematica Policy Res., Princeton (1979)

    Google Scholar 

  32. Sarma, S., Devlin, R.A., Hogg, W.: Physician’s production of primary care in Ontario, Canada. Health Econ. 19(1), 14–30 (2009)

    Google Scholar 

  33. Scott, A.: Economics of general practice. In: Culyer, A.J., Newhouse, J.P. (eds.) Handbook of Health Economics, pp. 1175–1200. Elsevier B.V., Amsterdam (2000)

    Google Scholar 

  34. Serritzlew, S., Andersen, L.B.: Økonomiske incitamenter i praksissektoren: Lægens tre fristelser. Politica 38(4), 392–409 (2006)

    Google Scholar 

  35. Smith, P.C., Street, A.: Concepts and challenges in measuring the performance of health care systems. In: Jones, A. (ed.) The Elgar Companion to Health Economics. Edward Elgar, Cheltenham (2006)

    Google Scholar 

  36. Sorensen, T.H., Olsen, K.R., Vedsted, P.: Association between general practice referral rates and patients’ socioeconomic status and access to specialised health care a population-based nationwide study. Health Policy 92(2–3), 180–186 (2009)

    Article  PubMed  Google Scholar 

  37. Sørensen, T.H., et al.: Differences in general practice initiated expenditures across Danish local health authorities—a multilevel analysis. Health Policy 92(1), 35–42 (2009)

    Article  PubMed  Google Scholar 

  38. Staat, M.: The efficiency of treatment strategies of general practitioners. Malmquist index approach. Eur. J. Health Econ. 4(3), 232–238 (2003)

    Article  PubMed  Google Scholar 

  39. Staat, M.: Efficiency of hospitals in Germany: A DEA-bootstrap approach. Appl. Econ. 38, 2255–2263 (2006)

    Article  Google Scholar 

  40. Staat, M.: Estimating the efficiency of general practitioners controlling for case mix and outlier effects. Empir. Econ. 40(2), 321–342 (2011)

    Article  Google Scholar 

  41. Thurston, N.K., Libby, A.M.: A production function for physician services revisited. Rev. Econ. Stat. 84(1), 184–191 (2002)

    Article  Google Scholar 

  42. Vedsted, P., Sorensen, T.H.: Praksisscore på DADI baseret på praksispopulationer i 2006—model I og model II, Unpublished (2009)

  43. Wensing, M., Van den, H.P., Akkermans, R., Van, D.J., Grol, R.: Physician workload in primary care: what is the optimal size of practices? A cross-sectional study. Health Policy 77(3), 260–267 (2006)

    Article  PubMed  Google Scholar 

  44. Wyke, S., Mays, N., Street, A., Bevan, G., McLeod, H., Goodwin, N.: Should general practitioners purchase health care for their patients? The total purchasing experiment in Britain. Health Policy 65(3), 243–259 (2003)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Rose Olsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, K.R., Gyrd-Hansen, D., Sørensen, T.H. et al. Organisational determinants of production and efficiency in general practice: a population-based study. Eur J Health Econ 14, 267–276 (2013). https://doi.org/10.1007/s10198-011-0368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10198-011-0368-1

Keywords

JEL Classification

Navigation