Skip to main content
Log in

OLS Estimation of Markov switching VAR models: asymptotics and application to energy use

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

We show that the ordinary least squares (OLS) estimates of population parameters for Markov switching vector autoregressive (MS VAR) models coincide with the maximum likelihood estimates. Then, we propose an algorithm in matrix form for the estimation of model parameters, and derive an explicit expression in closed-form for the asymptotic covariance matrix of the OLS estimator of such models. The obtained characterization of the asymptotic variance is new to our knowledge. It is easier to program than the usual approach based on second derivatives, and more accurate. Our theorems generalize the classical results known for a linear VAR process, and complete those existing in the literature on the estimation of the asymptotic covariance matrix for multivariate stationary time series. Numerical simulations are provided to illustrate the obtained theoretical results. Finally, an application on energy use and economic growth in the Euro area gives some insights on the nonlinear nature of the corresponding time series, and reproduces the major stylized facts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert, J.H., Chib, S.: Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts. J. Bus. Econ. Stat. 11(1), 1–15 (1993)

    Google Scholar 

  • Baggenstoss, P.M.: A modified Baum-Welch algorithm for hidden Markov models with multiple observation spaces. IEEE Trans. Speech Audio Process. 9(4), 411–416 (2001)

    Article  Google Scholar 

  • Bao, Y., Hua, Y.: On the Fisher information matrix of a vector ARMA process. Econ. Lett. 123, 14–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Billio, M., Monfort, A., Robert, C.P.: Bayesian estimation of switching ARMA models. J. Econom. 93, 229–255 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Cavicchioli, M.: Spectral density of Markov-switching VARMA models. Econ. Lett. 121, 218–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Cavicchioli, M.: Determining the number of regimes in Markov-switching VAR and VMA models. J. Time Ser. Anal. 35(2), 173–186 (2014a)

    Article  MathSciNet  MATH  Google Scholar 

  • Cavicchioli, M.: Analysis of the likelihood function for Markov switching VAR(CH) models. J. Time Ser. Anal. 35(6), 624–639 (2014b)

    Article  MathSciNet  MATH  Google Scholar 

  • Cavicchioli, M.: Higher order moments of Markov switching VARMA models. Econom. Theory 33(6), 1502–1515 (2017a)

    Article  MathSciNet  MATH  Google Scholar 

  • Cavicchioli, M.: Asymptotic Fisher information matrix of Markov switching VARMA models. J. Multivar. Anal. 157, 124–135 (2017b)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, J.: Spectral density of Markov switching models: derivation, simulation studies and application. Model Assist. Stat. Appl. 11(4), 277–291 (2016)

    Google Scholar 

  • Chib, S.: Calculating posterior distributions and model estimates in Markov mixture models. J. Econom. 75, 79–97 (1996)

    Article  MATH  Google Scholar 

  • Douc, R., Moulines, É., Ryden, T.: Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Ann. Stat. 32(5), 2254–2304 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Fernández-Villaverde, J., Rubio-Ramirez, J., Sargent, T., Watson, M.: ABCs (and Ds) of understanding VARs. Am. Econ. Rev. 97, 1021–1026 (2007)

    Article  Google Scholar 

  • Filardo, A.J.: Business-cycle phases and their transitional dynamics. J. Bus. Econ. Stat. 12(3), 299–308 (1994)

    Google Scholar 

  • Francq, C., Zakoïan, J.M.: Stationarity of multivariate Markov switching ARMA models. J. Econom. 102, 339–364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Goldfeld, S.M., Quandt, R.E.: A Markov model for switching regressions. J. Econom. 1, 3–16 (1973)

    Article  MATH  Google Scholar 

  • Hahn, M., Frühwirth-Schnatter, S., Sass, J.: Estimating models based on Markov jump processes given fragmented observation series. AStA Adv. Stat. Anal. 93(4), 403–425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton, J.D.: A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57, 357–384 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton, J.D.: Analysis of time series subject to changes in regime. J. Econom. 45, 39–70 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton, N.J. (1994)

    Book  MATH  Google Scholar 

  • Hamilton, J.D.: Specification testing in Markov switching time series models. J. Econom. 70, 127–157 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton, J.D.: Macroeconomic regimes and regime shifts. In: Taylor, J.B., Uhlig, H. (eds) Handbook of Macroeconomics, Elsevier vol. 2, pp. 163–201 (2016)

  • Ioannidis, E.E.: Spectra of bivariate VAR(p) models. J. Stat. Plan. Inference 137, 554–566 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Karamé, F.: Asymmetries and Markov-switching structural VAR. J. Econ. Dyn. Control 53, 85–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, C.J.: Dynamic linear models with Markov switching. J. Econom. 60, 1–22 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, C.J., Nelson, C.R.: Has the U.S. economy become more stable? A Bayesian approach based on a Markov-switching model of the Business Cycle. Rev. Econ. Stat. 81(4), 608–619 (1999)

    Article  Google Scholar 

  • Kim, C.J., Piger, J., Startz, R.: Estimation of Markov regime-switching regression models with endogenous switching. J. Econom. 143, 263–273 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Krolzig, H.M.: Markov-switching Vector Autoregressions: Modelling, Statistical Inference and Application to Business Cycle Analysis. Springer–Verlag, Berlin–Heidelberg–New York. (1997)

  • Janczura, J., Weron, R.: Efficient estimation of Markov regime-switching models: An application to electricity spot prices. AStA Adv. Stat. Anal. 96(3), 385–407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Janczura, J., Weron, R.: Goodness-of-fit testing for the marginal distribution of regime-switching models with an application to electricity spot prices. AStA Adv. Stat. Anal. 97(3), 239–270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Lanne, M., Lütkepohl, H., Maciejowska, K.: Structural vector autoregressions with Markov switching. J. Econ. Dyn. Control 34(2), 121–131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, C.C., Chang, C.P.: The impact of energy consumption on economic growth: evidence from linear and nonlinear models in Taiwan. Energy 32, 2282–2294 (2007)

    Article  Google Scholar 

  • Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer Verlag, Berlin-Heidelberg-New York (2007)

    MATH  Google Scholar 

  • Newton, H.J.: The information matrices of the parameters of multiple mixed time series. J. Multivar. Anal. 8, 317–323 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Pataracchia, B.: The Spectral Representation of Markov Switching ARMA Models. Econ. Lett. 112, 11–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Seifritz, W., Hodgkin, J.: Nonlinear dynamics of the per capita energy consumption. Energy 16, 615–620 (1991)

    Article  Google Scholar 

  • Sims, C.A.: Macroeconomics and reality. Econometrica 48, 1–48 (1980)

    Article  Google Scholar 

  • Sims, C.A., Waggoner, D.F., Zha, T.: Methods for inference in large multiple-equation Markov-switching models. J. Econom. 146, 255–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Sims, C.A., Zha, T.: Were there regime switches in U.S. Monetary Policy? Am. Econ. Rev. 96, 54–81 (2006)

    Article  Google Scholar 

  • Stelzer, R.: On Markov-switching ARMA processes-stationarity, existence of moments and geometric ergodicity. Econom. Theory 25(1), 43–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Ubierna, A., Velilla, S.: A goodness-of-fit process for ARMA(p, q) models based on a modified residual autocorrelation sequence. J. Stat. Plan. Inference 137, 2903–2919 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Velilla, S., Thu, H.N.: A goodness-of-fit test for VARMA(p, q) models. J. Stat. Plan. Inference 197, 126–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J., Zivot, E.: A Bayesian time series model of multiple structural changes in level, trend, and variance. J. Bus. Econ. Stat. 18(3), 374–386 (2000)

    Google Scholar 

  • Whittle, P.: The analysis of multiple stationary time series. J. R. Stat. Soc. Ser. B 15, 125–139 (1953)

    MathSciNet  MATH  Google Scholar 

  • Wong, C.S., Li, W.K.: On a mixture autoregressive model. J. R. Stat. Soc. B62, 95–115 (2000)

    MathSciNet  MATH  Google Scholar 

  • Yang, M.: Some properties of vector autoregressive processes with Markov-switching coefficients. Econom. Theory 16, 23–43 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, H., He, G.: Some properties of matrix product and its applications in nonnegative tensor decomposition. J. Inform. Comput. Sci. 3(4), 269–280 (2008)

    Google Scholar 

Download references

Acknowledgements

Work financially supported by FAR research Grant (2019) of the University of Modena and Reggio Emilia, Italy. The author would like to thank the Editor-in-Chief of the journal, Professor Yarema Okhrin, and two anonymous reviewers for their valuable and constructive comments which improved the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maddalena Cavicchioli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Derivation of (3).

$$\begin{aligned} \begin{aligned} {\text {SSE}}_T&= \sum _{m = 1}^M \, \sum _{t = 1}^T \, {{\varvec{\epsilon }}}_{t, m}^{'} \, {{\varvec{\epsilon }}}_{t, m}\, = \sum _{m = 1}^M \, T \, E_{T}( {{\varvec{\epsilon }}}_{t, s_t}^{'} \, {{\varvec{\epsilon }}}_{t, s_t} | s_t = m) \\&= \sum _{m = 1}^M \, T \, E_T \left[ E({{\varvec{\epsilon }}}_{t, s_t}^{'} \, {{\varvec{\epsilon }}}_{t, s_t} | s_t = m, {\mathbf{Y}}_T)\, {\text {Pr}}(s_t = m| {\mathbf{Y}}_T)\right] \\&= T \, \sum _{m = 1}^M \, E_T\left[ E({{\varvec{\epsilon }}}_{t, m}^{'} \, {{\varvec{\epsilon }}}_{t, m} | {\mathbf{Y}}_T)\, \xi _{m t | T}\right] \\&= \sum _{m = 1}^M \, \sum _{t = 1}^T \, [{\mathbf{y}}_t - ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {\varvec{\beta }}_{m}]^{'} \, [{\mathbf{y}}_t - ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {\varvec{\beta }}_{m}]\, \xi _{m t | T}. \end{aligned} \end{aligned}$$

Derivation of (7).

The first derivative of \(J({{\varvec{\theta }}})\) with respect to \(\pi _m\) gives

$$\begin{aligned} \frac{\partial \, J({{\varvec{\theta }}})}{\partial \, \pi _m} \, = \, \sum _{t = 1}^T \, \pi _{m}^{- 1} \, \xi _{m t | T} \, - \, \lambda \, = \, 0 \end{aligned}$$

hence

$$\begin{aligned} \lambda \, = \, \sum _{t = 1}^T \, \pi _{m}^{- 1} \, \xi _{m t | T}. \end{aligned}$$

Summing up over \(m = 1, \dots , M\), produces

$$\begin{aligned} \lambda \, = \, \lambda \, \sum _{m = 1}^M \, \pi _m \, = \, \sum _{m = 1}^M \, \sum _{t = 1}^T \, \xi _{m t | T} = \sum _{t = 1}^T \, \left( \sum _{m = 1}^M \, \xi _{m t | T} \right) \, = \, \sum _{t = 1}^T \, 1 \, = \, T. \end{aligned}$$

Now Equation (7) follows. Finally, we have \( {\text {plim}}_{T \rightarrow \infty } \, {{\hat{\pi }}}_m \, = \, E(\xi _{m t | T}) \, = \, \pi _m, \) for all \(m \in \Xi \). This proves the consistency of \({\hat{\pi }}_m\).

Derivation of (9).

Taking the first derivative of \({\text {SSE}}_T\) with respect to \({\varvec{\beta }}_m\) gives

$$\begin{aligned} \frac{\partial \, {\text {SSE}}_T}{\partial \, {\varvec{\beta }}_m} = \sum _{t = 1}^T \, (- {\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, \left[ {\mathbf{y}}_t \, - \, ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {\varvec{\beta }}_m\right] \, {\xi }_{m t | T} = {{\varvec{0}}} \end{aligned}$$

hence

$$\begin{aligned} \left[ \sum _{t = 1}^T \, ({\mathbf{x}}_t \, {\mathbf{x}}_{t}^{'}) \otimes {\mathbf{I}}_K \, {\xi }_{m t | T} \right] \, {\hat{\varvec{\beta }}}_m \, = \, \sum _{t = 1}^T \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\mathbf{y}}_t \, {\xi }_{m t | T} \end{aligned}$$

or equivalently

$$\begin{aligned} ({\mathbf{X}}_{m T} \otimes {\mathbf{I}}_K) \, {\hat{\varvec{\beta }}}_m \, = \, \sum _{t = 1}^T \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\mathbf{y}}_t \, {\xi }_{m t | T}. \end{aligned}$$

Since \({\mathbf{X}}_{m T}\) is invertible, we get

$$\begin{aligned} {\hat{\varvec{\beta }}}_m \, = \, ({\mathbf{X}}_{m T} \otimes {\mathbf{I}}_K)^{- 1} \, \left[ \sum _{t = 1}^T \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\mathbf{y}}_t \, {\xi }_{m t | T}\right] \end{aligned}$$

which gives (9). Since

$$\begin{aligned} \frac{\partial ^2 \, {\text {SSE}}_T}{\partial \, {\varvec{\beta }}_m \, \partial \, {\varvec{\beta }}_{m}^{'}} \, = \, 2 \, \sum _{t = 1}^T \, ({\mathbf{x}}_t \, {\mathbf{x}}_{t}^{'}) \otimes {\mathbf{I}}_K \, {\xi }_{m t | T} \, = \, 2 \, {\mathbf{X}}_{m T} \otimes {\mathbf{I}}_K \end{aligned}$$

is positive definite, the OLS estimates \({\hat{\varvec{\beta }}}_m \) is a minimizer of the function \({\text {SSE}}_T\) for every \(m = 1, \dots , M\).

Derivation of (10).

$$\begin{aligned} \begin{aligned} E_T ({\hat{{\varvec{\epsilon }}}}_{t, s_t} \, {\hat{\varvec{\epsilon }}}_{t, s_t}^{'} | s_t = m)\,&= \, E_T\left[ E({\hat{{\varvec{\epsilon }}}}_{t, m} \, {\hat{{\varvec{\epsilon }}}}_{t, m}^{'} | {\mathbf{Y}}_T)\, \xi _{m t | T}\right] \, = \, E_T ( {\hat{\varvec{\Omega }}}_m \, \, \xi _{m t | T})\\&= \, {\hat{\varvec{\Omega }}}_m \, \left( T^{- 1}\, \sum _{t = 1}^T \, \xi _{m t | T}\right) \, = \, E_T\left( {\hat{\varvec{\epsilon }}}_{t, m} \, {\hat{{\varvec{\epsilon }}}}_{t, m}^{'} \, \xi _{m t | T}\right) \\&= \, T^{- 1}\, \sum _{t = 1}^T \, [{\mathbf{y}}_t - ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {\hat{\varvec{\beta }}}_{m}] \, [{\mathbf{y}}_t - ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {\hat{\varvec{\beta }}}_{m}]^{'}\, \xi _{m t | T}. \end{aligned} \end{aligned}$$

Derivation of (11).

Using (2) for \(s_t = m\) with \({{\varvec{\epsilon }}}_{t m} \, = \, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t\), we get

$$\begin{aligned} \begin{aligned} {\hat{\varvec{\beta }}}_m&= \, [{\mathbf{X}}_{m T}^{- 1} \otimes {\mathbf{I}}_K]\, \left[ \sum _{t = 1}^T \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\mathbf{y}}_t \, {\xi }_{m t | T} \right] \\&= \, [{\mathbf{X}}_{m T} \otimes {\mathbf{I}}_K]^{- 1}\, \left\{ \sum _{t = 1}^T \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, \left[ ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {\varvec{\beta }}_m \, + \, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t\right] \, {\xi }_{m t | T} \right\} \\&= \, [{\mathbf{X}}_{m T} \otimes {\mathbf{I}}_K]^{- 1}\, \left[ \sum _{t = 1}^T \, ({\mathbf{x}}_t \, {\mathbf{x}}_{t}^{'}) \otimes {\mathbf{I}}_K) \, {\varvec{\beta }}_m \, {\xi }_{m t | T} \, + \, \sum _{t = 1}^T \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, {\xi }_{m t | T} \right] \\&= \, [{\mathbf{X}}_{m T} \otimes {\mathbf{I}}_K]^{- 1}\, \, [{\mathbf{X}}_{m T} \otimes {\mathbf{I}}_K]\, {\varvec{\beta }}_m \, + \, [{\mathbf{X}}_{m T} \otimes {\mathbf{I}}_K]^{- 1}\, \left[ \sum _{t = 1}^T \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, {\xi }_{m t | T}\right] \\&= \, {\varvec{\beta }}_m \, + \, [{\mathbf{X}}_{m T}^{- 1} \otimes {\mathbf{I}}_K]\, \left[ \sum _{t = 1}^T \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, {\xi }_{m t | T}\right] . \end{aligned} \end{aligned}$$

Proof of Theorem 2

Consistency of \({\hat{\varvec{\beta }}}_m \).

$$\begin{aligned} \begin{aligned}&{\text {plim}}_{T \rightarrow \infty } {\hat{\varvec{\beta }}}_m = \, {\varvec{\beta }}_m \, + \, {\text {plim}}_{T \rightarrow \infty } \left[ {\mathbf{X}}_{m T} \otimes {\mathbf{I}}_K\right] ^{- 1} \, {\text {plim}}_{T \rightarrow \infty } \left[ \sum _{t = 1}^T \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, {\xi }_{m t | T}\right] \\&\quad = \, {\varvec{\beta }}_m \, + \, {\text {plim}}_{T \rightarrow \infty } \left[ \frac{1}{T}\, {\mathbf{X}}_{m T} \otimes {\mathbf{I}}_K\right] ^{- 1} \, {\text {plim}}_{T \rightarrow \infty } \left[ \frac{1}{T}\, \sum _{t = 1}^T \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, {\xi }_{m t | T}\right] \\&\quad = \, {\varvec{\beta }}_m \, + \, \left[ {\mathbf{Q}}_{m}^{- 1} \otimes {\mathbf{I}}_K\right] \, E\left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, {\xi }_{m t | T}\right] \end{aligned} \end{aligned}$$

where \( {\mathbf{Q}}_{m}^{- 1} \otimes {\mathbf{I}}_K\) is finite by (12). Now, the second summand vanishes. In fact, we have

$$\begin{aligned} \begin{aligned} E\left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, {\xi }_{m t | T}\right]&= E\left\{ E\left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, {\xi }_{m t | T} | {\mathbf{Y}}_T \right] \right\} \\&= E\left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\varvec{\Sigma }}_m \, E({\mathbf{u}}_t \, {\xi }_{m t | T} | {\mathbf{Y}}_T)\right] \\&= E\left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K) \, {\varvec{\Sigma }}_m \, E({\mathbf{u}}_t)\, E({\xi }_{m t | T} | {\mathbf{Y}}_T)\right] = {{\varvec{0}}} \end{aligned} \end{aligned}$$

as \(E({\mathbf{u}}_t) = {{\varvec{0}}}\). Here, we use the fact that \({\mathbf{u}}_t\) is independent of \(s_t\), and hence \({\varvec{\xi }}_{t | T}\). The claim follows.

Consistency of \({\hat{\varvec{\Omega }}}_m \).

$$\begin{aligned} \begin{aligned} {\hat{\varvec{\Omega }}}_m&= \frac{\sum _{t = 1}^{T} \, [{\mathbf{y}}_t \, - \, ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {\hat{\varvec{\beta }}}_m] \, [{\mathbf{y}}_t \, - \, ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {\hat{\varvec{\beta }}}_m]^{'} \, {\xi }_{m t | T}}{\sum _{t = 1}^{T} \, {\xi }_{m t | T}}\\&= \frac{\sum _{t = 1}^{T} \, [({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {{\varvec{\beta }}}_m \, - \, ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {\hat{\varvec{\beta }}}_m \, + \, {{\varvec{\epsilon }}}_{t, m}] \, [({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {{\varvec{\beta }}}_m \, - \, ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, {\hat{\varvec{\beta }}}_m \, + \, {{\varvec{\epsilon }}}_{t, m}]^{'} \, {\xi }_{m t | T}}{\sum _{t = 1}^{T} \, {\xi }_{m t | T}}\\&= \frac{\sum _{t = 1}^{T} \, [({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, ({{\varvec{\beta }}}_m \, - \, {\hat{\varvec{\beta }}}_m) \, + \, {{\varvec{\epsilon }}}_{t, m}] \, [({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, ({{\varvec{\beta }}}_m \, - \, {\hat{\varvec{\beta }}}_m) \, + \, {{\varvec{\epsilon }}}_{t, m}]^{'} \, {\xi }_{m t | T}}{\sum _{t = 1}^{T} \, {\xi }_{m t | T}}\\&= \frac{\sum _{t = 1}^{T} \, ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, ({{\varvec{\beta }}}_m \, - \, {\hat{\varvec{\beta }}}_m) \, {{\varvec{\epsilon }}}_{t, m}^{'} \, {\xi }_{m t | T} \, + \sum _{t = 1}^{T}\, {{\varvec{\epsilon }}}_{t, m}\, ({{\varvec{\beta }}}_m \, - \, {\hat{\varvec{\beta }}}_m)^{'}\, ({\mathbf{x}}_{t} \otimes {\mathbf{I}}_K) \, {\xi }_{m t | T}}{\sum _{t = 1}^{T} \, {\xi }_{m t | T}}\\&\quad +\frac{ \sum _{t = 1}^{T}\, ({\mathbf{x}}_{t}^{'} \otimes {\mathbf{I}}_K) \, ({{\varvec{\beta }}}_m \, - \, {\hat{\varvec{\beta }}}_m) \, ({{\varvec{\beta }}}_m \, - \, {\hat{\varvec{\beta }}}_m)^{'} \, ({\mathbf{x}}_t \otimes {\mathbf{I}}_K)\, {\xi }_{m t | T} \, + \, \sum _{t = 1}^{T} \, {{\varvec{\epsilon }}}_{t, m} \, {{\varvec{\epsilon }}}_{t, m}^{'}\, {\xi }_{m t | T}}{\sum _{t = 1}^{T} \, {\xi }_{m t | T}}. \end{aligned} \end{aligned}$$

Since \({\text {plim}}_{T \rightarrow \infty } \, {\hat{\varvec{\beta }}}_m \, = \, {{\varvec{\beta }}}_m \), it follows that

$$\begin{aligned} \begin{aligned} {\text {plim}}_{T \rightarrow \infty } \, {\hat{\varvec{\Omega }}}_m&= {\text {plim}}_{T \rightarrow \infty } \, \frac{T^{- 1} \, \sum _{t = 1}^{T} \, {{\varvec{\epsilon }}}_{t, m} \, {\varvec{\epsilon }}_{t, m}^{'}\, {\xi }_{m t | T}}{T^{- 1}\, \sum _{t = 1}^{T} \, {\xi }_{m t | T}}\\&= \frac{E({{\varvec{\epsilon }}}_{t, m} \, {\varvec{\epsilon }}_{t, m}^{'}\, {\xi }_{m t | T})}{E({\xi }_{m t | T})} = \frac{E({\varvec{\Sigma }}_{ m} \, \, {\mathbf{u}}_t \, {\mathbf{u}}_{t}^{'}\, {\varvec{\Sigma }}_{m}^{'}\, {\xi }_{m t | T})}{E[E({\xi }_{m t} | {\mathbf{Y}}_T)]} \\&= \frac{E[E({\varvec{\Sigma }}_{ m} \, \, {\mathbf{u}}_t \, {\mathbf{u}}_{t}^{'}\, {\varvec{\Sigma }}_{m}^{'}\, {\xi }_{m t | T} | {\mathbf{Y}}_T)]}{E({\xi }_{m t})}\\&= \frac{E[{\varvec{\Sigma }}_{ m} \, \, E({\mathbf{u}}_t \, {\mathbf{u}}_{t}^{'})\, {\varvec{\Sigma }}_{m}^{'}\, E( {\xi }_{m t | T} | {\mathbf{Y}}_T)]}{\pi _m}\\&= \frac{E[{\varvec{\Sigma }}_{ m} {\varvec{\Sigma }}_{ m}^{'} \, E( {\xi }_{m t | T} | {\mathbf{Y}}_T)]}{\pi _m} = \frac{{\varvec{\Sigma }}_{ m} {\varvec{\Sigma }}_{ m}^{'} \, E[ E( {\xi }_{m t | T} | {\mathbf{Y}}_T)]}{\pi _m}\\&= \frac{{\varvec{\Omega }}_{ m} \, \pi _m}{\pi _m} \, = \, {\varvec{\Omega }}_{ m}. \end{aligned} \end{aligned}$$

as \({\mathbf{u}}_t\) is independent of \(s_t\) (and hence \({\varvec{\xi }}_{t | T})\), \(E({\mathbf{u}}_t \, {\mathbf{u}}_{t}^{'}) = {\mathbf{I}}_K\), and \(E(\xi _{m t}) = \pi _m\), for every \(m = 1, \dots , M\).

Derivation of (13).

We have to prove that the process \(\{({\mathbf{x}}_t \otimes {\mathbf{I}}_K)\, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, \xi _{m t | T}\}\) has zero mean and asymptotic covariance matrix \({\mathbf{Q}}_m \otimes {\varvec{\Omega }}_m\). For the mean, see the proof of consistency of \({\hat{\varvec{\beta }}}_m \) given above. For the variance, we have

$$\begin{aligned} \begin{aligned}&{\text {var}} \left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K)\, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, \xi _{m t | T}\right] = E\left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K)\, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, \xi _{m t | T}^{2}\, {\mathbf{u}}^{'}_{t} \, {\varvec{\Sigma }}^{'}_m \, ({\mathbf{x}}^{'}_t \otimes {\mathbf{I}}_K)\right] \\&\quad = E \left\{ E\left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K)\, {\varvec{\Sigma }}_m \, {\mathbf{u}}_t \, \xi _{m t | T}^{2}\, {\mathbf{u}}^{'}_{t} \, {\varvec{\Sigma }}^{'}_m \, ({\mathbf{x}}^{'}_t \otimes {\mathbf{I}}_K) | {\mathbf{Y}}_T \right] \right\} \\&\quad = E \left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K)\, {\varvec{\Sigma }}_m \, E({\mathbf{u}}_t \, {\mathbf{u}}^{'}_{t} \, \xi _{m t | T}^{2} | {\mathbf{Y}}_T) \, {\varvec{\Sigma }}^{'}_m \, ({\mathbf{x}}^{'}_t \otimes {\mathbf{I}}_K) \right] \\&\quad = E \left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K)\, {\varvec{\Sigma }}_m \, E({\mathbf{u}}_t \, {\mathbf{u}}^{'}_{t}) \, E(\xi _{m t | T}^{2} | {\mathbf{Y}}_T) \, {\varvec{\Sigma }}^{'}_m \, ({\mathbf{x}}^{'}_t \otimes {\mathbf{I}}_K) \right] \\&\quad = E \left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K)\, {\varvec{\Sigma }}_m \, {\varvec{\Sigma }}^{'}_m \, E(\xi _{m t | T} | {\mathbf{Y}}_T) \, ({\mathbf{x}}^{'}_t \otimes {\mathbf{I}}_K) \right] \\&\quad = E \left[ ({\mathbf{x}}_t \otimes {\mathbf{I}}_K)\, {\varvec{\Omega }}_m \, E(\xi _{m t | T} | {\mathbf{Y}}_T) \, ({\mathbf{x}}^{'}_t \otimes {\mathbf{I}}_K) \right] \\&\quad = E \left[ E({\mathbf{x}}_t \, {\mathbf{x}}^{'}_t \, \xi _{m t | T} | {\mathbf{Y}}_T)\right] \otimes {\varvec{\Omega }}_m \\&\quad = E ({\mathbf{x}}_t \, {\mathbf{x}}^{'}_t \, \xi _{m t | T}) \otimes {\varvec{\Omega }}_m \, = \, {\mathbf{Q}}_m \otimes {\varvec{\Omega }}_m. \end{aligned} \end{aligned}$$

Here, we use the fact that \({\mathbf{u}}_t\) is independent of \(s_t\), and hence \(\xi ^{2}_{m t | T}\). Furthermore, \(E({\mathbf{u}}_t \, {\mathbf{u}}^{'}_{t}) = {\mathbf{I}}_K\) and \(E(\xi ^{2}_{m t | T} | {\mathbf{Y}}_T) = E(\xi _{m t | T}| {\mathbf{Y}}_T)\) as \(E(\xi ^{2}_{m t}) = E(\xi _{m t}) = \pi _m\), for every \(m = 1, \dots , M\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavicchioli, M. OLS Estimation of Markov switching VAR models: asymptotics and application to energy use. AStA Adv Stat Anal 105, 431–449 (2021). https://doi.org/10.1007/s10182-020-00383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-020-00383-4

Keywords

JEL Classification

Navigation