Advertisement

Vine copula regression for observational studies

  • Roger M. CookeEmail author
  • Harry Joe
  • Bo Chang
Original Paper
  • 62 Downloads

Abstract

If explanatory variables and a response variable of interest are simultaneously observed, then fitting a joint multivariate density to all variables would enable prediction via conditional distributions. Regular vines or vine copulas with arbitrary univariate margins provide a rich and flexible class of multivariate densities for Gaussian or non-Gaussian dependence structures. The density enables calculation of all regression functions for any subset of variables conditional on any disjoint set of variables, thereby avoiding issues of transformations, heteroscedasticity, interactions, and higher-order terms. Only the question of finding an adequate vine copula remains. Heteroscedastic prediction inferences based on vine copulas are illustrated with two data sets, including one from the National Longitudinal Study of Youth relating breastfeeding to IQ. Some usual methods based on linear and quadratic equations are shown to have some undesirable inferences.

Keywords

Regular vine Gaussian copula Heteroscedasticity National Longitudinal Study of Youth Breastfeeding IQ Pitfalls of regression inference 

Notes

Acknowledgements

Harry Joe is supported by NSERC Discovery Grant 8698. Roger Cooke acknowledges financial support from the Bill and Melinda Gates Foundation through the University of Virginia for related work on the NLSY data. Thanks to the referees for their constructive comments leading to an improved presentation.

References

  1. Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insur. Math. Econ. 44(2), 182–198 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bates, D.M., Watts, D.G.: Nonlinear Regression Analysis and Its Applications. Wiley, New York (1988)CrossRefzbMATHGoogle Scholar
  3. Bedford, T., Cooke, R.M.: Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32(1–4), 245–268 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bedford, T., Cooke, R.M.: Vines—a new graphical model for dependent random variables. Ann. Stat. 30(4), 1031–1068 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bernard, C., Czado, C.: Conditional quantiles and tail dependence. J. Multivar. Anal. 138, 104–126 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Box, G.E.P., Draper, N.R.: Response Surfaces, Mixtures, and Ridge Analyses, 2nd edn. Wiley, Hoboken (2007)CrossRefzbMATHGoogle Scholar
  7. Box, G.E.P., Tidwell, P.W.: Transformation of the independent variables. Technometrics 4, 531–550 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Brechmann, E.C., Czado, C., Aas, K.: Truncated regular vines in high dimensions with application to financial data. Can. J. Stat. 40(1), 68–85 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Brechmann, E.C., Joe, H.: Truncation of vine copulas using fit indices. J. Multivar. Anal. 138, 19–33 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Chang, B., Joe, H.: Prediction based on conditional distributions of vine copulas. Comput. Stat. Data Anal. 139, 45–63 (2019)MathSciNetCrossRefGoogle Scholar
  11. Colson, A., Cooke R.M., Lutter, R.: How does breastfeeding affect IQ? applying the classical model of structured expert judgment. Resources for the Future, RFF DP16-28 (2016)Google Scholar
  12. Cooke, R.M., Kurowicka, D., Wilson, K.: Sampling, conditionalizing, counting, merging, searching regular vines. J. Multivar. Anal. 138, 4–18 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Dissmann, J., Brechmann, E.C., Czado, C., Kurowicka, D.: Selecting and estimating regular vine copulae and application to financial returns. Comput. Stat. Data Anal. 59, 52–69 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Joe, H.: Dependence Modeling with Copulas. Chapman & Hall/CRC, Boca Raton (2014)CrossRefzbMATHGoogle Scholar
  15. Joe, H.: Dependence properties of conditional distributions of some copula models. Methodol. Comput. Appl. Probab. (2018).  https://doi.org/10.1007/s11009-017-9544-9 MathSciNetzbMATHGoogle Scholar
  16. Kraus, D., Czado, C.: D-vine copula based quantile regression. Comput. Stat. Data Anal. 110, 1–18 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kurowicka, D., Joe, H.: Dependence Modeling: Vine Copula Handbook. World Scientific, Singapore (2011)Google Scholar
  18. Nikoloulopoulos, A.K., Joe, H., Li, H.: Vine copulas with asymmetric tail dependence and applications to financial return data. Comput. Stat. Data Anal. 56(11), 3659–3673 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Parsa, R.A., Klugman, S.A.: Copula regression. Variance 5(1), 45–54 (2011)Google Scholar
  20. Robeson, S.M., Steyn, D.G.: Evaluation and comparison of statistical forecast models for daily maximum ozone concentrations. Atmos. Environ. 24B, 303–312 (1990)CrossRefGoogle Scholar
  21. Sala-I-Martin, X.X.: I just ran two million regressions. Am. Econ. Rev. 87(2), 178–183 (1997)Google Scholar
  22. Stöber, J., Hong, H.G., Czado, C., Ghosh, P.: Comorbidity of chronic diseases in the elderly: patterns identified by a copula design for mixed responses. Comput. Stat. Data Anal. 88, 28–39 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Tong, H., Kumar, T.K., Huang, Y.: Developing Econometrics. Wiley, Chichester (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Resources for the FutureWashingtonUSA
  2. 2.Department of StatisticsUniversity of British ColumbiaVancouverCanada

Personalised recommendations