Change-in-mean tests in long-memory time series: a review of recent developments

Abstract

It is well known that standard tests for a mean shift are invalid in long-range dependent time series. Therefore, several long-memory robust extensions of standard testing principles for a change-in-mean have been proposed in the literature. These can be divided into two groups: those that utilize consistent estimates of the long-run variance and self-normalized test statistics. Here, we review this literature and complement it by deriving a new long-memory robust version of the sup-Wald test. Apart from giving a systematic review, we conduct an extensive Monte Carlo study to compare the relative performance of these methods. Special attention is paid to the interaction of the test results with the estimation of the long-memory parameter. Furthermore, we show that the power of self-normalized test statistics can be improved considerably by using an estimator that is robust to mean shifts.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    We thank an anonymous referee for pointing this out.

References

  1. Abadir, K.M., Distaso, W., Giraitis, L.: Two estimators of the long-run variance: beyond short memory. J. Econom. 150(1), 56–70 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  2. Andrews, D.W.K.: Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59(3), 817–858 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  3. Andrews, D.W.K.: Tests for parameter instability and structural change with unknown change point. Econometrica 61(4), 821–856 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  4. Bauer, D.F.: Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 67(339), 687–690 (1972)

    Article  MATH  Google Scholar 

  5. Betken, A.: Testing for change-points in long-range dependent time series by means of a self-normalized Wilcoxon test. J. Time Ser. Anal. 37(6), 785–809 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  6. Brown, R.L., Durbin, J., Evans, J.M.: Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. Ser. B (Methodological) 37(2), 149–192 (1975)

    MathSciNet  MATH  Google Scholar 

  7. Dehling, H., Rooch, A., Taqqu, M.S.: Non-parametric change-point tests for long-range dependent data. Scand. J. Stat. 40(1), 153–173 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  8. Diebold, F.X., Inoue, A.: Long memory and regime switching. J. Econom. 105(1), 131–159 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  9. Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4(4), 221–238 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  10. Granger, C.W.J., Hyung, N.: Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. J. Empir. Finance 11(3), 399–421 (2004)

    Article  Google Scholar 

  11. Granger, C.W.J., Hyung, N., Jeon, Y.: Spurious regressions with stationary series. Appl. Econ. 33(7), 899–904 (2001)

    Article  Google Scholar 

  12. Hidalgo, J., Robinson, P.M.: Testing for structural change in a long-memory environment. J. Econom. 70(1), 159–174 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  13. Horváth, L., Kokoszka, P.: The effect of long-range dependence on change-point estimators. J. Stat. Plan. Inference 64(1), 57–81 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  14. Hou, J., Perron, P.: Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations. J. Econom. 182(2), 309–328 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  15. Iacone, F., Leybourne, S.J., Taylor, R.A.M.: A fixed-B test for a break in level at an unknown time under fractional integration. J. Time Ser. Anal. 35(1), 40–54 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  16. Kiefer, N.M., Vogelsang, T.J.: A new asymptotic theory for heteroskedasticity-autocorrelation robust tests. Econom. Theory 21(6), 1130–1164 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  17. Krämer, W., Sibbertsen, P.: Testing for structural changes in the presence of long memory. Int. J. Bus. Econ. 1(3), 235–242 (2002)

    Google Scholar 

  18. Künsch, H.R.: Statistical aspects of self-similar processes. In: Proceedings of the First World Congress of the Bernoulli Society vol. 1, pp. 67–74 (1987)

  19. Marinucci, D., Robinson, P.M.: Alternative forms of fractional Brownian motion. J. Stat. Plan. Inference 80(1), 111–122 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  20. McCloskey, A., Perron, P.: Memory parameter estimation in the presence of level shifts and deterministic trends. Econom. Theory 29(6), 1196–1237 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  21. McElroy, T., Politis, D.N.: Fixed-b asymptotics for the studentized mean from time series with short, long, or negative memory. Econom. Theory 28(02), 471–481 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  22. Mikosch, T., Stărică, C.: Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Rev. Econ. Stat. 86(1), 378–390 (2004)

    Article  Google Scholar 

  23. Newey, W.K., West, K.D.: A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55(3), 703–708 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  24. Ohanissian, A., Russell, J.R., Tsay, R.S.: True or spurious long memory? A new test. J. Bus. Econ. Stat. 26(2), 161–175 (2008)

    MathSciNet  Article  Google Scholar 

  25. Perron, P., Qu, Z.: Long-memory and level shifts in the volatility of stock market return indices. J. Bus. Econ. Stat. 28(2), 275–290 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  26. Qu, Z.: A test against spurious long memory. J. Bus. Econ. Stat. 29(3), 423–438 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  27. Robinson, P.M.: Gaussian semiparametric estimation of long range dependence. Ann. Stat. 23(5), 1630–1661 (1995a)

    MathSciNet  Article  MATH  Google Scholar 

  28. Robinson, P.M.: Log-periodogram regression of time series with long range dependence. Ann. Stat. 23, 1048–1072 (1995b)

    MathSciNet  Article  MATH  Google Scholar 

  29. Robinson, P.M.: Robust covariance matrix estimation: HAC estimates with long memory/antipersistence correction. Econom. Theory 21(01), 171–180 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  30. Shao, X.: A self-normalized approach to confidence interval construction in time series. J. R. Stat. Soc.: Ser. B (Statistical Methodology) 72(3), 343–366 (2010)

    MathSciNet  Article  Google Scholar 

  31. Shao, X.: A simple test of changes in mean in the possible presence of long-range dependence. J. Time Ser. Anal. 32(6), 598–606 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  32. Shao, X., Zhang, X.: Testing for change points in time series. J. Am. Stat. Assoc. 105(491), 1228–1240 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  33. Sibbertsen, P., Leschinski, C., Busch, M.: A multivariate test against spurious long memory. J. Econom. 203(1), 33–49 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  34. Sun, Y.: Let’s fix it: fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and autocorrelation robust inference. J. Econom. 178, 659–677 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  35. Sun, Y., Phillips, P.C.B., Jin, S.: Optimal bandwidth selection in heteroskedasticity-autocorrelation robust testing. Econometrica 76(1), 175–194 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  36. Wang, L.: Change-in-mean problem for long memory time series models with applications. J. Stat. Comput. Simul. 78(7), 653–668 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  37. Wright, J.H.: Testing for a structural break at unknown date with long-memory disturbances. J. Time Ser. Anal. 19(3), 369–376 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  38. Yajima, Y.: On estimation of a regression model with long-memory stationary errors. Ann. Stat. 16(2), 791–807 (1988)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kai Wenger.

Additional information

Financial support of the Deutsche Forschungsgesellschaft (DFG) is gratefully acknowledged. We would like to thank the anonymous referees for their reviews. We highly appreciate their comments and suggestions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wenger, K., Leschinski, C. & Sibbertsen, P. Change-in-mean tests in long-memory time series: a review of recent developments. AStA Adv Stat Anal 103, 237–256 (2019). https://doi.org/10.1007/s10182-018-0328-5

Download citation

Keywords

  • Fractional integration
  • Structural breaks
  • Long memory

JEL Classification

  • C12
  • C22