Advertisement

Change-in-mean tests in long-memory time series: a review of recent developments

  • Kai Wenger
  • Christian Leschinski
  • Philipp Sibbertsen
Original Paper
  • 323 Downloads

Abstract

It is well known that standard tests for a mean shift are invalid in long-range dependent time series. Therefore, several long-memory robust extensions of standard testing principles for a change-in-mean have been proposed in the literature. These can be divided into two groups: those that utilize consistent estimates of the long-run variance and self-normalized test statistics. Here, we review this literature and complement it by deriving a new long-memory robust version of the sup-Wald test. Apart from giving a systematic review, we conduct an extensive Monte Carlo study to compare the relative performance of these methods. Special attention is paid to the interaction of the test results with the estimation of the long-memory parameter. Furthermore, we show that the power of self-normalized test statistics can be improved considerably by using an estimator that is robust to mean shifts.

Keywords

Fractional integration Structural breaks Long memory 

JEL Classification

C12 C22 

References

  1. Abadir, K.M., Distaso, W., Giraitis, L.: Two estimators of the long-run variance: beyond short memory. J. Econom. 150(1), 56–70 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Andrews, D.W.K.: Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59(3), 817–858 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Andrews, D.W.K.: Tests for parameter instability and structural change with unknown change point. Econometrica 61(4), 821–856 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bauer, D.F.: Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 67(339), 687–690 (1972)CrossRefzbMATHGoogle Scholar
  5. Betken, A.: Testing for change-points in long-range dependent time series by means of a self-normalized Wilcoxon test. J. Time Ser. Anal. 37(6), 785–809 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Brown, R.L., Durbin, J., Evans, J.M.: Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. Ser. B (Methodological) 37(2), 149–192 (1975)MathSciNetzbMATHGoogle Scholar
  7. Dehling, H., Rooch, A., Taqqu, M.S.: Non-parametric change-point tests for long-range dependent data. Scand. J. Stat. 40(1), 153–173 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Diebold, F.X., Inoue, A.: Long memory and regime switching. J. Econom. 105(1), 131–159 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4(4), 221–238 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Granger, C.W.J., Hyung, N.: Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. J. Empir. Finance 11(3), 399–421 (2004)CrossRefGoogle Scholar
  11. Granger, C.W.J., Hyung, N., Jeon, Y.: Spurious regressions with stationary series. Appl. Econ. 33(7), 899–904 (2001)CrossRefGoogle Scholar
  12. Hidalgo, J., Robinson, P.M.: Testing for structural change in a long-memory environment. J. Econom. 70(1), 159–174 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Horváth, L., Kokoszka, P.: The effect of long-range dependence on change-point estimators. J. Stat. Plan. Inference 64(1), 57–81 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Hou, J., Perron, P.: Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations. J. Econom. 182(2), 309–328 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Iacone, F., Leybourne, S.J., Taylor, R.A.M.: A fixed-B test for a break in level at an unknown time under fractional integration. J. Time Ser. Anal. 35(1), 40–54 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Kiefer, N.M., Vogelsang, T.J.: A new asymptotic theory for heteroskedasticity-autocorrelation robust tests. Econom. Theory 21(6), 1130–1164 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Krämer, W., Sibbertsen, P.: Testing for structural changes in the presence of long memory. Int. J. Bus. Econ. 1(3), 235–242 (2002)Google Scholar
  18. Künsch, H.R.: Statistical aspects of self-similar processes. In: Proceedings of the First World Congress of the Bernoulli Society vol. 1, pp. 67–74 (1987)Google Scholar
  19. Marinucci, D., Robinson, P.M.: Alternative forms of fractional Brownian motion. J. Stat. Plan. Inference 80(1), 111–122 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. McCloskey, A., Perron, P.: Memory parameter estimation in the presence of level shifts and deterministic trends. Econom. Theory 29(6), 1196–1237 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. McElroy, T., Politis, D.N.: Fixed-b asymptotics for the studentized mean from time series with short, long, or negative memory. Econom. Theory 28(02), 471–481 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Mikosch, T., Stărică, C.: Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Rev. Econ. Stat. 86(1), 378–390 (2004)CrossRefGoogle Scholar
  23. Newey, W.K., West, K.D.: A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55(3), 703–708 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Ohanissian, A., Russell, J.R., Tsay, R.S.: True or spurious long memory? A new test. J. Bus. Econ. Stat. 26(2), 161–175 (2008)MathSciNetCrossRefGoogle Scholar
  25. Perron, P., Qu, Z.: Long-memory and level shifts in the volatility of stock market return indices. J. Bus. Econ. Stat. 28(2), 275–290 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Qu, Z.: A test against spurious long memory. J. Bus. Econ. Stat. 29(3), 423–438 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Robinson, P.M.: Gaussian semiparametric estimation of long range dependence. Ann. Stat. 23(5), 1630–1661 (1995a)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Robinson, P.M.: Log-periodogram regression of time series with long range dependence. Ann. Stat. 23, 1048–1072 (1995b)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Robinson, P.M.: Robust covariance matrix estimation: HAC estimates with long memory/antipersistence correction. Econom. Theory 21(01), 171–180 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Shao, X.: A self-normalized approach to confidence interval construction in time series. J. R. Stat. Soc.: Ser. B (Statistical Methodology) 72(3), 343–366 (2010)MathSciNetCrossRefGoogle Scholar
  31. Shao, X.: A simple test of changes in mean in the possible presence of long-range dependence. J. Time Ser. Anal. 32(6), 598–606 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Shao, X., Zhang, X.: Testing for change points in time series. J. Am. Stat. Assoc. 105(491), 1228–1240 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Sibbertsen, P., Leschinski, C., Busch, M.: A multivariate test against spurious long memory. J. Econom. 203(1), 33–49 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  34. Sun, Y.: Let’s fix it: fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and autocorrelation robust inference. J. Econom. 178, 659–677 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. Sun, Y., Phillips, P.C.B., Jin, S.: Optimal bandwidth selection in heteroskedasticity-autocorrelation robust testing. Econometrica 76(1), 175–194 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Wang, L.: Change-in-mean problem for long memory time series models with applications. J. Stat. Comput. Simul. 78(7), 653–668 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Wright, J.H.: Testing for a structural break at unknown date with long-memory disturbances. J. Time Ser. Anal. 19(3), 369–376 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  38. Yajima, Y.: On estimation of a regression model with long-memory stationary errors. Ann. Stat. 16(2), 791–807 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kai Wenger
    • 1
  • Christian Leschinski
    • 1
  • Philipp Sibbertsen
    • 1
  1. 1.Leibniz University HannoverHannoverGermany

Personalised recommendations