A longitudinal model for shapes through triangulation

Original Paper
  • 14 Downloads

Abstract

It is known that the shapes of planar triangles can be represented by a set of points on the surface of the unit sphere. On the other hand, most of the objects can easily be triangulated and so each triangle can accordingly be treated in the context of shape analysis. There is a growing interest to fit a smooth path going through the cloud of shape data available in some time instances. To tackle this problem, we propose a longitudinal model through a triangulation procedure for the shape data. In fact, our strategy initially relies on a spherical regression model for triangles, but is extended to shape data via triangulation. Regarding modeling of directional data, we use the bivariate von Mises–Fisher distribution for density of the errors. Various forms of the composite likelihood functions, constructed by altering the assumptions considered for the angles defined for each triangle, are invoked. The proposed regression model is applied to rat skull data. Also, some simulations results are presented along with the real data results.

Keywords

Bivariate von Mises–Fisher distribution Composite likelihood Longitudinal data analysis Triangulation Spherical regression 

References

  1. Barry, S.J., Bowman, A.W.: Linear mixed models for longitudinal shape data with applications to facial modeling. Biostatistics 9(3), 555–565 (2008)CrossRefMATHGoogle Scholar
  2. Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with discussion). J. R. Stat. Soc. Ser. B. 36(2), 192–236 (1974)MATHGoogle Scholar
  3. Bookstein, F.L.: A statistical method for biological shape comparisons. J. Theor. Biol. 107(3), 475–520 (1984)CrossRefGoogle Scholar
  4. Bookstein, F.L.: Size and shape spaces for landmark data in two dimensions (with discussion). Stat. Sci. 1(2), 181–242 (1986)CrossRefMATHGoogle Scholar
  5. Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, New York (1991)MATHGoogle Scholar
  6. Chandler, R.E., Bate, S.: Inference for clustered data using the independence loglikelihood. Biometrika 94(1), 167–183 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. Cox, D.R.: Partial likelihood. Biometrika 62(2), 269–276 (1975)MathSciNetCrossRefMATHGoogle Scholar
  8. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: IEEE 11th International Conference on Computer Vision, pp. 1–7 (2007)Google Scholar
  9. Di Marzio, M., Panzera, A., Taylor, C.C.: Non-parametric regression for circular responses. Scand. J. Stat. 40(2), 238–255 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1998)MATHGoogle Scholar
  11. Fisher, R.A.: Dispersion on a sphere. Proc. R. Soc. Lond. A 217, 295–305 (1953)MathSciNetCrossRefMATHGoogle Scholar
  12. Fisher, N.I., Lee, A.J.: Regression models for an angular response. Biometrics 48(3), 665–677 (1992)MathSciNetCrossRefGoogle Scholar
  13. Fletcher, P.T.: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. Gould, A.L.: A regression technique for angular variates. Biometrics 25(4), 683–700 (1969)CrossRefGoogle Scholar
  15. Hinkle, J., Fletcher, P.T., Joshi, S.: Intrinsic polynomials for regression on Riemannian manifolds. J. Math. Imaging Vis. 50(1–2), 32–52 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. Huckemann, S., Ziezold, H.: Principal component analysis for Riemannian manifolds, with an application to triangular shape spaces. Adv. Appl. Probab. 38(2), 299–319 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. Joe, H., Lee, Y.: On weighted of bivariate margins in pairwise likelihood. J. Multivar. Anal. 100(4), 670–685 (2009)CrossRefMATHGoogle Scholar
  18. Johnson, R.A., Wehrly, T.E.: Some angular-linear distributions and related regression models. J. Am. Stat. Assoc. 73(363), 602–606 (1978)MathSciNetCrossRefMATHGoogle Scholar
  19. Jupp, P.E., Kent, J.T.: Fitting smooth paths to speherical data. J. R. Stat. Soc. Ser. C. 36(1), 34–46 (1987)MATHGoogle Scholar
  20. Jupp, P.E., Mardia, K.V.: A general correlation coefficient for directional data and related regression problems. Biometrika 67(1), 163–173 (1980)MathSciNetCrossRefMATHGoogle Scholar
  21. Kendall, D.G.: The diffusion of shape. Adv. Appl. Probab. 9(3), 428–430 (1977)CrossRefGoogle Scholar
  22. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)MathSciNetCrossRefMATHGoogle Scholar
  23. Kent, J., Mardia, K., Morris, R., Aykroyd, R.: Functional models of growth for landmark data. In: Mardia, K.V., Aykroyd, R.G. (eds.) Proceedings in Functional and Spatial Data Analysis, pp. 109–115. Leeds University Press, Leeds (2001)Google Scholar
  24. Kume, A., Dryden, I.L., Le, H.: Shape-space smoothing splines for planar landmark data. Biometrika 94(3), 513–528 (2007)MathSciNetCrossRefMATHGoogle Scholar
  25. Mardia, K.V.: Statistics of Directional Data. Academic Press, London (1972)MATHGoogle Scholar
  26. Mardia, K.V.: Statistics of directional data (with discussion). J. R. Stat. Soc. B. 37(3), 349–393 (1975)MATHGoogle Scholar
  27. Mardia, K.V.: Shape analysis of triangles through directional techniques. J. R. Stat. Soc. B 51(3), 449–458 (1989)MathSciNetGoogle Scholar
  28. Mardia, K.V., Hughes, G., Taylor, C.C.: Efficiency of the pseudolikelihood for multivariate normal and von Mises distributions. Research Report 07-02, Department of Statistics, University of Leeds (2007)Google Scholar
  29. Mardia, K.V., Hughes, G., Taylor, C.C., Singh, H.: A multivariate von Mises distribution with applications to bioinformatics. Can. J. Stat. 36(1), 99–109 (2008)MathSciNetCrossRefMATHGoogle Scholar
  30. Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, London (2000)MATHGoogle Scholar
  31. Mardia, K.V., Kent, J.T., Hughes, G., Taylor, C.C.: Maximum likelihood estimation using composite likelihoods for closed exponential families. Biometrika 96(4), 975–982 (2009)MathSciNetCrossRefMATHGoogle Scholar
  32. Mardia, K.V., Kirkbride, J., Bookstein, F.L.: Statistics of shape, direction and cylindrical variables. J. Appl. Stat. 31(4), 465–479 (2004)MathSciNetCrossRefMATHGoogle Scholar
  33. Moghimbeygi, M., Golalizadeh, M.: Longitudinal shape analysis by using the spherical coordinates. J. Appl. Stat. 44(7), 1282–1295 (2017)MathSciNetCrossRefGoogle Scholar
  34. Morris, R., Kent, J., Mardia, K., Aykroyd, R.: A parallel growth model for shape. In: Arridge, S., Todd-Pokropek, A. (eds.) Proceedings in Medical Imaging Understanding and Analysis, pp. 171–174. BMVA, Bristol (2000)Google Scholar
  35. Peng, D., Deng, M.: A method of measuring shape similarity between multi-scale objects. In: Proceedings of the 12th International Conference on GeoComputation, Wuhan, China (2013)Google Scholar
  36. Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis: Methods and Case Studies. Springer, New York (2002)CrossRefMATHGoogle Scholar
  37. Rivest, L.P.: A distribution for dependent unit vectors. Commun. Stat. Theory Methods 17(2), 461–483 (1988)MathSciNetCrossRefMATHGoogle Scholar
  38. Thompson, R., Clark, R.M.: Fitting polar wander paths. Phys. Earth Planet. Inter. 27, 1–7 (1981)CrossRefGoogle Scholar
  39. Trouvé, A., Vialard, F.X.: A second-order model for time-dependent data interpolation: splines on shape spaces. In: MICCAI STIA workshop, MICCAI, Beijing (2010)Google Scholar
  40. Varin, C.: On composite marginal likelihoods. AStA Adv. Stat. Anal. 92(1), 1–28 (2008)MathSciNetCrossRefMATHGoogle Scholar
  41. Varin, C., Czado, C.: A mixed autoregressive probit model for ordinal longitudinal data. Biostatistics 11(1), 127–138 (2010)CrossRefGoogle Scholar
  42. Watson, G.S., Williams, E.J.: On the construction of significance tests on the circle and the sphere. Biometrika 43(3/4), 344–352 (1956)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of StatisticsTarbiat Modares UniversityTehranIran

Personalised recommendations