Abstract
A scalar-response functional model describes the association between a scalar response and a set of functional covariates. An important problem in the functional data literature is to test nullity or linearity of the effect of the functional covariate in the context of scalar-on-function regression. This article provides an overview of the existing methods for testing both the null hypotheses that there is no relationship and that there is a linear relationship between the functional covariate and scalar response, and a comprehensive numerical comparison of their performance. The methods are compared for a variety of realistic scenarios: when the functional covariate is observed at dense or sparse grids and measurements include noise or not. Finally, the methods are illustrated on the Tecator data set.
Similar content being viewed by others
References
Borggaard, C., Thodberg, H.H.: Optimal minimal neural interpretation of spectra. Anal. Chem. 64(5), 545–551 (1992)
Cai, T.T., Hall, P., et al.: Prediction in functional linear regression. Ann. Stat. 34(5), 2159–2179 (2006)
Cardot, H., Ferraty, F., Sarda, P.: Functional linear model. Stat. Probab. Lett. 45(1), 11–22 (1999)
Cardot, H., Ferraty, F., Mas, A., Sarda, P.: Testing hypotheses in the functional linear model. Scand. J. Stat. 30(1), 241–255 (2003)
Cardot, H., Goia, A., Sarda, P.: Testing for no effect in functional linear regression models, some computational approaches. Commun. Stat. Simul. Comput. 33(1), 179–199 (2004)
Crainiceanu, C.M., Ruppert, D.: Likelihood ratio tests in linear mixed models with one variance component. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 66(1), 165–185 (2004). https://doi.org/10.1111/j.1467-9868.2004.00438.x
Crambes, C., Kneip, A., Sarda, P.: Smoothing splines estimators for functional linear regression. Ann. Stat. 37, 35–72 (2009)
Delsol, L., Ferraty, F., Vieu, P.: Structural test in regression on functional variables. J. Multivar. Anal. 102(3), 422–447 (2011). https://doi.org/10.1016/j.jmva.2010.003. http://linkinghub.elsevier.com/retrieve/pii/S0047259X10002095. Accessed 6 Oct 2015
Febrero-Bande, M., González-Manteiga, W.: Generalized additive models for functional data. Test 22(2), 278–292 (2013)
Febrero-Bande, M., Oviedo de la Fuente, M.: Statistical computing in functional data analysis: the R package fda.usc. J. Stat. Softw. 51(4), 1–28 (2012). http://www.jstatsoft.org/v51/i04/. Accessed 6 Oct 2015
Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and Practice. Springer, Berlin (2006)
García-Portugués, E., González-Manteiga, W., Febrero-Bande, M.: A goodness-of-fit test for the functional linear model with scalar response. J. Comput. Gr. Stat. 23(3), 761–778 (2014). https://doi.org/10.1080/10618600.2013.812519
Goldsmith, J., Bobb, J., Crainiceanu, C.M., Caffo, B., Reich, D.: Penalized functional regression. J. Comput. Gr. Stat. 20, 830–851 (2011)
González-Manteiga, W., González-Rodríguez, G., Martínez-Calvo, A., García-Portugués, E.: Bootstrap independence test for functional linear models (2012). arXiv preprint arXiv:1210.1072
Greven, S., Crainiceanu, C.M., Küchenhoff, H., Peters, A.: Restricted likelihood ratio testing for zero variance components in linear mixed models. J. Comput. Gr. Stat. 17(4), 870–891 (2008). https://doi.org/10.1198/106186008X386599
Hall, P., Horowitz, J.L., et al.: Methodology and convergence rates for functional linear regression. Ann. Stat. 35(1), 70–91 (2007)
Horváth, L., Reeder, R.: A test of significance in functional quadratic regression. Bernoulli 19(5A), 2120–2151 (2013). https://doi.org/10.3150/12-BEJ446. http://projecteuclid.org/euclid.bj/1383661216. Accessed 6 Oct 2015
Kim, J., Maity, A., Staicu, A.M.: General functional concurrent model. Technical report #2660, North Carolina State University (2016). http://www.stat.ncsu.edu/information/library/mimeo.php
Kong, D., Staicu, A.M., Maity, A.: Classical testing in functional linear models. J. Nonparametr. Stat. 28(4), 813–838 (2016)
McLean, M.W., Hooker, G., Staicu, A.M., Scheipl, F., Ruppert, D.: Functional generalized additive models. J. Comput. Gr. Stat. 23(1), 249–269 (2014)
McLean, M.W., Hooker, G., Ruppert, D.: Restricted likelihood ratio tests for linearity in scalar-on-function regression. Stat. Comput. 25(5), 997–1008 (2015). https://doi.org/10.1007/s11222-014-9473-1
Morris, J.S.: Functional regression. Ann. Rev. Stat. Appl. 2, 321–359 (2015)
Müller, H.G., Stadtmüller, U.: Generalized functional linear models. Ann. Stat. 33, 774–805 (2005)
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team.: nlme: Linear and nonlinear mixed effects models. R package version 3.1-128 (2016). https://CRAN.R-project.org/package=nlme. Accessed 3 Jan 2017
Ramsay, J.O., Dalzell, C.J.: Some tools for functional data analysis. J. R. Stat. Soc. Ser. B (Methodol.) 53, 539–572 (1991)
Ramsay, J.O., Silverman, B.: Functional Data Analysis. Springer, New York (1997)
Ramsay, J.O., Silverman, B.: Functional Data Analysis. Springer, New York (2005)
Reiss, P.T., Huang, L., Mennes, M.: Fast function-on-scalar regression with penalized basis expansions. Int. J. Biostat. 6(1) (2010)
Reiss, P.T., Goldsmith, J., Shang, H.L., Ogden, R.T.: Methods for scalar-on-function regression. Int. Stat. Rev. 85(2), 228–249 (2017)
Scheipl, F., Bolker, B., R Core Team.: RLRsim: Exact (restricted) likelihood ratio tests for mixed and additive models. R package version 3.1-3 (2016). https://cran.r-project.org/package=RLRsim. Accessed 3 Jan 2017
Su, Y.R., Di, C.Z., Hsu, L.: Hypothesis testing in functional linear models. Biometrics 73, 551–561 (2017)
Swihart, B.J., Goldsmith, J., Crainiceanu, C.M.: Restricted likelihood ratio tests for functional effects in the functional linear model. Technometrics 56(4), 483–493 (2014)
Wood, S.N., Scheipl, F., Faraway, J.J.: Straightforward intermediate rank tensor product smoothing in mixed models. Stat. Comput. 1–20 (2013)
Yao, F., Müller, H.G.: Functional quadratic regression. Biometrika 97(1), 49–64 (2010)
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Tekbudak, M.Y., Alfaro-Córdoba, M., Maity, A. et al. A comparison of testing methods in scalar-on-function regression. AStA Adv Stat Anal 103, 411–436 (2019). https://doi.org/10.1007/s10182-018-00337-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10182-018-00337-x