Advertisement

AStA Advances in Statistical Analysis

, Volume 102, Issue 2, pp 145–166 | Cite as

A penalized spline estimator for fixed effects panel data models

  • Peter Pütz
  • Thomas Kneib
Original Paper
  • 187 Downloads

Abstract

Estimating nonlinear effects of continuous covariates by penalized splines is well established for regressions with cross-sectional data as well as for panel data regressions with random effects. Penalized splines are particularly advantageous since they enable both the estimation of unknown nonlinear covariate effects and inferential statements about these effects. The latter are based, for example, on simultaneous confidence bands that provide a simultaneous uncertainty assessment for the whole estimated functions. In this paper, we consider fixed effects panel data models instead of random effects specifications and develop a first-difference approach for the inclusion of penalized splines in this case. We take the resulting dependence structure into account and adapt the construction of simultaneous confidence bands accordingly. In addition, the penalized spline estimates as well as the confidence bands are also made available for derivatives of the estimated effects which are of considerable interest in many application areas. As an empirical illustration, we analyze the dynamics of life satisfaction over the life span based on data from the German Socio-Economic Panel. An open-source software implementation of our methods is available in the R package pamfe.

Keywords

First-difference estimator Life satisfaction Panel data Penalized splines Simultaneous confidence bands 

Supplementary material

10182_2017_296_MOESM1_ESM.pdf (183 kb)
Supplementary material 1 (pdf 183 KB)

References

  1. Antoniadis, A., Gijbels, I., Verhasselt, A.: Variable selection in additive models using P-splines. Technometrics 54(4), 425–438 (2012)MathSciNetCrossRefGoogle Scholar
  2. Baltagi, B.H., Li, D.: Series estimation of partially linear panel data models with fixed effects. Ann. Econ. Financ. 3(1995), 103–116 (2002)Google Scholar
  3. Chen, J., Gao, J., Li, D.: Estimation in partially linear single-index panel data models with fixed effects. J. Bus. Econ. Stat. 31(3), 315–330 (2013a)MathSciNetCrossRefGoogle Scholar
  4. Chen, J., Li, D., Gao, J.: Non- and semi-parametric panel data models: a selective review. http://ecgi.ssrn.com/delivery.php?ID=http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2313431 (2013b)
  5. Claeskens, G., Krivobokova, T., Opsomer, J.D.: Asymptotic properties of penalized spline estimators. Biometrika 96(3), 529–544 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Claeskens, G., Van Keilegom, I.: Bootstrap confidence bands for regression curves and their derivatives. Ann. Stat. 31(6), 1852–1884 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Crainiceanu, C.M., Ruppert, D., Carroll, R.J., Joshi, A., Goodner, B.: Spatially adaptive Bayesian penalized splines with heteroscedastic errors. J. Comput. Graph. Stat. 16(2), 265–288 (2007)MathSciNetCrossRefGoogle Scholar
  8. De Boor, C.: A Practical Guide to Splines. Springer, Berlin (2001)zbMATHGoogle Scholar
  9. Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–102 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Eubank, A.R.L., Speckman, P.L.: Confidence bands in nonparametric regression. J. Am. Stat. Assoc. 88(424), 1287–1301 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Fahrmeir, L., Kneib, T., Lang, S., Marx, B.: Regression. Models, Methods and Applications. Springer, Berlin (2013)zbMATHGoogle Scholar
  12. Ferrer-i Carbonell, A., Frijters, P.: How important is methodology for the estimates of the determinants of happiness? Econ. J. 114(497), 641–659 (2004)CrossRefGoogle Scholar
  13. Frijters, P., Beatton, T.: The mystery of the U-shaped relationship between happiness and age. J. Econ. Behav. Organ. 82(2–3), 525–542 (2012)CrossRefGoogle Scholar
  14. Hajargasht, G.: Nonparametric panel data models: a penalized spline approach. https://sites.google.com/site/ghgasht/NonpPanelSpline.pdf?attredirects=0 (2009)
  15. Härdle, W., Huet, S., Mammen, E., Sperlich, S.: Bootstrap inference in semiparametric generalized additive models. Econ. Theory 20(02), 265–300 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Henderson, D.J., Carroll, R.J., Li, Q.: Nonparametric estimation and testing of fixed effects panel data models. J. Econ. 144(1), 257–275 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kauermann, G., Krivobokova, T., Fahrmeir, L.: Some asymptotic results on generalized penalized spline smoothing. J. R. Stat. Soc. Ser. B Stat. Methodol. 71(2), 487–503 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Krivobokova, T., Kauermann, G.: A note on penalized spline smoothing with correlated errors. J. Am. Stat. Assoc. 102(480), 1328–1337 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Krivobokova, T., Kneib, T., Claeskens, G.: Simultaneous confidence bands for penalized spline estimators. J. Am. Stat. Assoc. 105(490), 852–863 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Laporte, A., Windmeijer, F.: Estimation of panel data models with binary indicators when treatment effects are not constant over time. Econ. Lett. 88(3), 389–396 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Li, G., Peng, H., Tong, T.: Simultaneous confidence band for nonparametric fixed effects panel data models. Econ. Lett. 119(3), 229–232 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Loader, C.R., Sun, J.: Robustness of tube formula based confidence bands. J. Comput. Graph. Stat. 6(2), 242–250 (1997)MathSciNetGoogle Scholar
  23. López Ulloa, B.F., Møller, V., Sousa-Poza, A.: How does subjective well-being evolve with age? A literature review. J. Popul. Ageing 6(3), 227–246 (2013)CrossRefGoogle Scholar
  24. Lucas, R.E.: Adaptation and the set-point model of subjective well-being: does happiness change after major life events? Curr. Dir. Psychol. Sci. 16(2), 75–79 (2007)CrossRefGoogle Scholar
  25. Mammen, E., Støve, B., Tjøstheim, D.: Nonparametric additive models for panels of time series. Econ. Theory 25(02), 442 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Neumann, M.H., Polzehl, J.: Simultaneous bootstrap confidence bands in nonparametric regression. J. Nonparametr. Stat. 9(4), 307–333 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Pinheiro, J.C., Bates, D.M.: Mixed Effects Models in S and S-PLUS. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  28. Qian, J., Wang, L.: Estimating semiparametric panel data models by marginal integration. J. Econo. 167(2), 483–493 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Ruppert, D., Wand, M.: Semiparametric Regression. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  30. Su, L., Ullah, A.: Profile likelihood estimation of partially linear panel data models with fixed effects. Econ. Lett. 92, 75–81 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Su, L., Ullah, A.: Nonparametric and Semiparametric Panel Econometric Models: Estimation and Testing. Handbook of Empirical Economics and Finance, pp. 455–497. Taylor & Francis Group, Abingdon (2011)Google Scholar
  32. Sun, J., Loader, C.R.: Simultaneous confidence bands for linear regression and smoothing. Ann. Stat. 22(3), 1328–1345 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Wagner, G.G., Frick, J.R., Schupp, J.: The German Socio-Economic Panel Study (SOEP)—scope, evolution, and enhancements. Schmollers Jahrbuch 127(1), 139–169 (2007)Google Scholar
  34. Wang, J., Yang, L.: Polynomial spline confidence bands for regression curves. Stat. Sin. 19, 325–342 (2009)MathSciNetzbMATHGoogle Scholar
  35. Wang, X., Shen, J., Ruppert, D.: On the asymptotics of penalized spline smoothing. Electron. J. Stat. 5, 1–17 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Weyl, H.: Weyl—on the volume of tubes.pdf. Am. J. Math. 61(2), 461–472 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Wiesenfarth, M., Krivobokova, T., Klasen, S., Sperlich, S.: Direct simultaneous inference in additive models and its application to model undernutrition. J. Am. Stat. Assoc. 107(500), 1286–1296 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. Wood, S.N.: Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, Boca Raton (2006)zbMATHGoogle Scholar
  39. Wood, S.N., Pya, N., Säfken, B.: Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 1459(8), 1–45 (2016)MathSciNetGoogle Scholar
  40. Wooldridge, J.M.: Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge (2002)zbMATHGoogle Scholar
  41. Wunder, C., Wiencierz, A., Schwarze, J., Küchenhoff, H.: Well-being over the life span: semiparametric evidence from British and German longitudinal data. Rev. Econ. Stat. 95(1), 154–167 (2011)CrossRefGoogle Scholar
  42. Yang, L.: Confidence band for additive regression model. J. Data Sci. 6, 207–217 (2008)Google Scholar
  43. Yoshida, T., Naito, K.: Asymptotics for penalized additive B-spline regression. J. Jpn. Stat. Soc. 42(1), 81–107 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  44. Yoshida, T., Naito, K.: Asymptotics for penalized splines in generalized additive models. J. Nonparametr. Stat. 26(2), 269–289 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  45. Zhang, J., Feng, S., Li, G., Lian, H.: Empirical likelihood inference for partially linear panel data models with fixed effects. Econ. Lett. 113(2), 165–167 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centre for StatisticsUniversität GöttingenGöttingenGermany
  2. 2.Chair of Statistics, Faculty of Economic SciencesUniversität GöttingenGöttingenGermany

Personalised recommendations