AStA Advances in Statistical Analysis

, Volume 101, Issue 4, pp 381–398 | Cite as

Species occupancy estimation and imperfect detection: shall surveys continue after the first detection?

  • Gurutzeta Guillera-ArroitaEmail author
  • José J. Lahoz-Monfort
Original Paper


Species occupancy, the proportion of sites occupied by a species, is a state variable of interest in ecology. One challenge in its estimation is that detection is often imperfect in wildlife surveys. As a consequence, occupancy models that explicitly describe the observation process are becoming widely used in the discipline. These models require data that are informative about species detectability. Such information is often obtained by conducting repeat surveys to sampling sites. One strategy is to survey each site a predefined number of times, regardless of whether the species is detected. Alternatively, one can stop surveying a site once the species is detected and reallocate the effort saved to surveying new sites. In this paper we evaluate the merits of these two general design strategies under a range of realistic conditions. We conclude that continuing surveys after detection is beneficial unless the cumulative probability of detection at occupied sites is close to one, and that the benefits are greater when the sample size is small. Since detectability and sample size tend to be small in ecological applications, our recommendation is to follow a strategy where at least some of the sites continue to be sampled after first detection.


Detectability Imperfect detection Occupancy Removal design Survey design Zero-inflated binomial 



This work was supported by the Australian Research Council (ARC) Centre of Excellence for Environmental Decisions. The authors thank Byron Morgan for comments on an earlier version of the manuscript.

Supplementary material

10182_2017_292_MOESM1_ESM.pdf (124 kb)
Supplementary material 1 (pdf 124 KB)
10182_2017_292_MOESM2_ESM.pdf (3.3 mb)
Supplementary material 2 (pdf 3421 KB)


  1. Bailey, L.L., Hines, J.E., Nichols, J.D., MacKenzie, D.I.: Sampling design trade-offs in occupancy studies with imperfect detection: examples and software. Ecol. Appl. 17(1), 281–290 (2007)CrossRefGoogle Scholar
  2. Bailey, L.L., MacKenzie, D.I., Nichols, J.D.: Advances and applications of occupancy models. Methods Ecol. Evol. 5(12), 1269–1279 (2014)CrossRefGoogle Scholar
  3. Besbeas, P., Freeman, S.N., Morgan, B.J.T., Catchpole, E.A.: Integrating mark–recapture–recovery and census data to estimate animal abundance and demographic parameters. Biometrics 58(3), 540–547 (2002). doi: 10.1111/J.0006-341x.2002.00540.X MathSciNetCrossRefzbMATHGoogle Scholar
  4. Borchers, D.L., Buckland, S.T., Zucchini, W.: Estimating Animal Abundance: Closed Populations. Springer, New York (2003)zbMATHGoogle Scholar
  5. Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, L.: Introduction to Distance Sampling. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  6. Buckland, S.T., Baillie, S.R., Dick, J.M., Elston, D.A., Magurran, A.E., Scott, E.M., Smith, R.I., Somerfield, P.J., et al.: How should regional biodiversity be monitored? Environ. Ecol. Stat. 19(4), 601–626 (2012). doi: 10.1007/s10651-012-0202-7 MathSciNetCrossRefGoogle Scholar
  7. Franklin, J.: Species distribution models in conservation biogeography: developments and challenges. Divers. Distrib. 19(10), 1217–1223 (2013)CrossRefGoogle Scholar
  8. Garrard, G.E., Bekessy, S.A., McCarthy, M.A., Wintle, B.A.: When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Aust. Ecol. 33(8), 986–998 (2008)CrossRefGoogle Scholar
  9. Guillera-Arroita, G.: Impact of sampling with replacement in occupancy studies with spatial replication. Methods Ecol. Evol. 2(4), 401–406 (2011)CrossRefGoogle Scholar
  10. Guillera-Arroita, G., Lahoz-Monfort, J.J.: Designing studies to detect differences in species occupancy: power analysis under imperfect detection. Methods Ecol. Evol. 3(5), 860–869 (2012)CrossRefGoogle Scholar
  11. Guillera-Arroita, G., Lahoz-Monfort, J.J., Milner-Gulland, E.J., Young, R.P., Nicholson, E.: Using occupancy as a state variable for monitoring the critically endangered Alaotran gentle lemur Hapalemur alaotrensis. Endanger. Species Res. 11, 157–166 (2010a)CrossRefGoogle Scholar
  12. Guillera-Arroita, G., Ridout, M.S., Morgan, B.J.T.: Design of occupancy studies with imperfect detection. Methods Ecol. Evol. 1(2), 131–139 (2010b)CrossRefGoogle Scholar
  13. Guillera-Arroita, G., Morgan, B.J.T., Ridout, M.S., Linkie, M.: Species occupancy modeling for detection data collected along a transect. J. Agric. Biol. Environ. Stat. 16(3), 301–317 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Guillera-Arroita, G., Hauser, C.E., McCarthy, M.A.: Optimal surveillance strategy for invasive species management when surveys stop after detection. Ecol. Evol. 4(10), 1751–1760 (2014a)CrossRefGoogle Scholar
  15. Guillera-Arroita, G., Lahoz-Monfort, J.J., MacKenzie, D.I., Wintle, B.A., McCarthy, M.A.: Ignoring imperfect detection in biological surveys is dangerous: a response to ‘fitting and interpreting occupancy models’. PLoS One 9(7), e99571 (2014b)CrossRefGoogle Scholar
  16. Guillera-Arroita, G., Ridout, M.S., Morgan, B.J.T.: Two-stage Bayesian study design for species occupancy estimation. J. Agric. Biol. Environ. Stat. 19(2), 278–291 (2014c)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kendall, W.L., White, G.C.: A cautionary note on substituting spatial subunits for repeated temporal sampling in studies of site occupancy. J. Appl. Ecol. 46(6), 1182–1188 (2009)Google Scholar
  18. Kéry, M.: Inferring the absence of a species: a case study of snakes. J. Wildl. Manag. 66(2), 330–338 (2002)CrossRefGoogle Scholar
  19. Kéry, M., Schmidt, B.R.: Imperfect detection and its consequences for monitoring for conservation. Community Ecol. 9(2), 207–216 (2008)CrossRefGoogle Scholar
  20. King, R.: Statistical ecology. Annu. Rev. Stat. Appl. 1, 401–426 (2014)CrossRefGoogle Scholar
  21. Lahoz-Monfort, J.J., Guillera-Arroita, G., Wintle, B.A.: Imperfect detection impacts the performance of species distribution models. Glob. Ecol. Biogeogr. 23, 504–515 (2014)CrossRefGoogle Scholar
  22. Lebreton, J.D., Burnham, K.P., Clobert, J., Anderson, D.R.: Modeling survival and testing biological hypotheses using marked animals—a unified approach with case-studies. Ecol. Monogr. 62(1), 67–118 (1992). doi: 10.2307/2937171 CrossRefGoogle Scholar
  23. MacKenzie, D.I., Royle, J.A.: Designing occupancy studies: general advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114 (2005)CrossRefGoogle Scholar
  24. MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A., Langtimm, C.A.: Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8), 2248–2255 (2002)CrossRefGoogle Scholar
  25. MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L., Hines, J.E.: Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Academic Press, New York (2006)zbMATHGoogle Scholar
  26. Morgan, B.J.T., Revell, D.J., Freeman, S.N.: A note on simplifying likelihoods for site occupancy models. Biometrics 63, 618–621 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). doi: 10.1093/comjnl/7.4.308 MathSciNetCrossRefzbMATHGoogle Scholar
  28. Patterson, T.A., Thomas, L., Wilcox, C., Ovaskainen, O., Matthiopoulos, J.: State-space models of individual animal movement. Trends Ecol. Evol. 23(2), 87–94 (2008). doi: 10.1016/j.tree.2007.10.009 CrossRefGoogle Scholar
  29. R Development Core Team: R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria (2016). Accessed 11 Jan 2016
  30. Royle, J.A.: Site occupancy models with heterogeneous detection probabilities. Biometrics 62, 97–102 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Schmidt, B.R., Kery, M., Ursenbacher, S., Hyman, O.J., Collins, J.P.: Site occupancymodels in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4(7), 646–653 (2013). doi: 10.1111/2041-210x.12052 CrossRefGoogle Scholar
  32. Tyre, A.J., Tenhumberg, B., Field, S.A., Niejalke, D., Parris, K., Possingham, H.P.: Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol. Appl. 13(6), 1790–1801 (2003)CrossRefGoogle Scholar
  33. Welsh, A.H., Lindenmayer, D.B., Donnelly, C.F.: Fitting and interpreting occupancy models. PLoS One 8(1), e52015 (2013)CrossRefGoogle Scholar
  34. Wibisono, H.T., Linkie, M., Guillera-Arroita, G., Smith, J.A., Sunarto, G., Pusparini, W., Asriadi, B.P.: Population status of a cryptic top predator: an island-wide assessment of tigers in Sumatran rainforests. PLoS One 6(11), e25931 (2011)CrossRefGoogle Scholar
  35. Yoccoz, N.G., Nichols, J.D., Boulinier, T.: Monitoring of biological diversity in space and time. Trends Ecol. Evol. 16(8), 446–453 (2001)CrossRefGoogle Scholar
  36. Zeller, K.A., Nijhawan, S., Salom-Perez, R., Potosme, S.H., Hines, J.E.: Integrating occupancy modeling and interview data for corridor identification: a case study for jaguars in Nicaragua. Biol. Conserv. 144(2), 892–901 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Gurutzeta Guillera-Arroita
    • 1
    Email author
  • José J. Lahoz-Monfort
    • 1
  1. 1.School of BiosciencesUniversity of MelbourneParkvilleAustralia

Personalised recommendations