AStA Advances in Statistical Analysis

, Volume 99, Issue 2, pp 131–160 | Cite as

Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional

Original Paper

Abstract

The kernel method estimator of the spatial modal regression for functional regressors is proposed. We establish, under some general mixing conditions, the \(L^p\)-consistency and the asymptotic normality of the estimator. The performance of the proposed estimator is illustrated in a real data application.

Keywords

Spatial process Conditional mode estimate Non-parametric Functional data 

Mathematics Subject Classification

62G20 62G08 

References

  1. Biau, G., Cadre, B.: Nonparametric spatial prediction. Stat. Inference Stoch. Process. 7, 327–349 (2004)CrossRefMATHMathSciNetGoogle Scholar
  2. Bosq, D.: Linear processes in function spaces: theory and applications. Lecture Notes in Statistics. Springer, New York (2000)CrossRefGoogle Scholar
  3. Cressie, N.A.: Statistics for spatial data. Wiley, New York (1993)Google Scholar
  4. Carbon, M., Hallin, M., Tran, L.T.: Kernel density estimation for random fields: the \(L^1\) -theory. J. Nonparametr. Stat. 6, 157–170 (1996)CrossRefMATHMathSciNetGoogle Scholar
  5. Carbon, M., Tran, L.T., Wu, B.: Kernel density estimation for random fields. Stat. Probab. Lett. 36, 115–125 (1997)CrossRefMATHMathSciNetGoogle Scholar
  6. Carbon, M., Francq, C., Tran, L.T.: Kernel regression estimation for random fields. J. Stat. Plan. Inference 137, 778–798 (2007)CrossRefMATHMathSciNetGoogle Scholar
  7. Collomb, G., Härdle, W., Hassani, S.: A note on prediction via conditional mode estimation. J. Stat. Plan. Inference 15, 227–236 (1987)CrossRefMATHGoogle Scholar
  8. Dabo-Niang, S., Laksaci, A.: Note on conditional mode estimation for functional dependent data. Statistica 70, 83–94 (2010)Google Scholar
  9. Dabo-Niang, S., Thiam, B.: Robust quantile estimation and prediction for spatial processes. Stat. Probab. Lett. 80, 1447–1458 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. Dabo-Niang, S., Rachdi, M., Yao, A.-F.: Spatial kernel regression estimation and prediction for functional random fields. Far. East. J. Stat. 37, 77–113 (2011a)MATHMathSciNetGoogle Scholar
  11. Dabo-Niang, S., Kaid, Z., Laksaci, A.: Sur la régression quantile pour variable explicative fonctionnelle : Cas des données spatiales. C. R. Math Acad. Sci. Paris. 349, 1287–1291 (2011b)CrossRefMATHMathSciNetGoogle Scholar
  12. Dabo-Niang, S., Kaid, Z., Laksaci, A.: On spatial conditional mode estimation for a functional regressor. Stati. Probab. Lett. 82, 1413–1421 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. Dabo-Niang, S., Yao, A.F.: Spatial kernel regression estimation. Math. Method Stat. 16, 1–20 (2007)Google Scholar
  14. Delicado, P., Giraldo, R., Comas, C., Mateu, J.: Statistics for spatial functional data: some recent contributions. Environmetrics 21, 224–239 (2010)Google Scholar
  15. Diggle, P., Ribeiro, P.J.: Model-based geostatistics. Springer, New York (2007)MATHGoogle Scholar
  16. Ezzahrioui, M., Ould-Saíd, E.: Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data. J. Nonparametr. Stat. 20, 3–18 (2008)CrossRefMathSciNetGoogle Scholar
  17. Fan, J., Gijbels, I.: Local polynomial modelling and its applications. Monographs on Statistics and Applied Probability, xvi, p. 341. Chapman & Hall, London (1996)MATHGoogle Scholar
  18. Ferraty, F., Vieu, P.: Nonparametric functional data analysis. Theory and practice. Springer, New York (2006)MATHGoogle Scholar
  19. Ferraty, F., Mas, A., Vieu, P.: Nonparametric regression on functional data: inference and practical aspects. Aust. N. Z. J. Stat 49(3), 267–286 (2007)CrossRefMATHMathSciNetGoogle Scholar
  20. Ferraty, F., Laksaci, A., Tadj, A., Vieu, P.: Rate of uniform consistency for nonparametric estimates with functional variables. J. Stat. Plan. Inference 140, 335–352 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. Gao, J., Lu, Z., Tjístheim, D.: Moment inequalities for spatial processes. Stat. Probab. Lett. 78, 687–697 (2008)CrossRefMATHGoogle Scholar
  22. Giraldo, R. (2009) Geostatistical analysis of functional data. Ph.D. thesis. Universitat Politícnica de CatalunyaGoogle Scholar
  23. Guyon, X. (1987) Estimation d’un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. In: Proceedings of the Sixth Franco-Belgian Meeting of StatisticiansGoogle Scholar
  24. Laksaci, A., Maref, F.: Estimation non paramétrique de quantiles conditionnels pour des variables fonctionnelles spatialement dépendantes. C. R., Math. Acad. Sci. Paris. 347, 1075–1080 (2009)CrossRefMATHMathSciNetGoogle Scholar
  25. Laksaci, A., Madani, F. and Rachdi, M.: Kernel conditional density estimation when the regressor is valued in a semi-metric space Comm. Statist. Theory Methods 42, 3544–3570 (2013)Google Scholar
  26. Li, J., Tran, L.T.: Nonparametric estimation of conditional expectation. J. Statt. Plan. Inference 139, 164–175 (2009)CrossRefMATHMathSciNetGoogle Scholar
  27. Lu, Z., Chen, X.: Spatial kernel regression: weak consistency. Stat. Probab. Lett. 68, 125–136 (2004)CrossRefMATHGoogle Scholar
  28. Ould Abdi, A., Diop, A., Dabo-Niang, S., Ould Abdi, S.A.: Estimation non paramétrique du mode conditionnel dans le cas spatial. C. R. Math. Acad. Sci. Paris 348, 815–819 (2010b)CrossRefMATHMathSciNetGoogle Scholar
  29. Ramsay, J.O., Silverman, B.W.: Appl. Funct. Data Anal. Springer, New York (2002)Google Scholar
  30. Ramsay, J.O., Silverman, B.W.: Functional data analysis, 2nd edn. Springer, New York (2005)Google Scholar
  31. Ramsay, J. FDA problems that I like to talk about. Personal communication (2008)Google Scholar
  32. Ripley, B.: Spatial statistics. Wiley, New York (1981)CrossRefMATHGoogle Scholar
  33. Roussas, G.G.: On some properties of nonparametric estimates of probability density functions. Bull. Soc. Math. Grèce (N.S.) 9, 29–43 (1968)MATHMathSciNetGoogle Scholar
  34. Tran, L.T.: Kernel density estimation on random fields. J. Multivar. Anal. 34, 37–53 (1990)Google Scholar
  35. Volkonski, V.A., Rozanov, Y.A.: Some limit theorems for random functions. I. Teor. Veroyatn. Primen. 4,186–207 (1959)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.EQUIPPE, Maison de la rechercheVilleneuve d’Ascq cedexFrance
  2. 2.Laboratoire de statistique et processus stochastiquesUniv. Djillali LiabèsSidi Bel AbbèsAlgeria

Personalised recommendations