AStA Advances in Statistical Analysis

, Volume 98, Issue 2, pp 121–142 | Cite as

A survey of functional principal component analysis

  • Han Lin ShangEmail author
Original Paper


Advances in data collection and storage have tremendously increased the presence of functional data, whose graphical representations are curves, images or shapes. As a new area of statistics, functional data analysis extends existing methodologies and theories from the realms of functional analysis, generalized linear model, multivariate data analysis, nonparametric statistics, regression models and many others. From both methodological and practical viewpoints, this paper provides a review of functional principal component analysis, and its use in explanatory analysis, modeling and forecasting, and classification of functional data.


Dimension reduction Explanatory analysis Functional data clustering Functional data modeling Functional data forecasting 



The author thanks the editor and two reviewers for their insightful comments, which led to a substantial improvement of the manuscript. The author thanks Professor Rob Hyndman for introducing him to the field of functional data analysis.


  1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) Lecture Notes in Computer Science, pp. 420–434. Springer, London (2001)Google Scholar
  2. Aguilera, A.M., Gutiérrez, R., Valderrama, M.J.: Approximation of estimators in the PCA of a stochastic process using B-splines. Commun. Stat. Simul. Comput. 25(3), 671–690 (1996)zbMATHGoogle Scholar
  3. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space, vol. I. Pitman Advanced Publishing Program, Boston (1981)zbMATHGoogle Scholar
  4. Aneiros-Pérez, G., Vieu, P.: Nonparametric time series prediction: a semi-functional partial linear modeling. J. Multivariate Anal. 99(5), 834–857 (2008)zbMATHMathSciNetGoogle Scholar
  5. Arabie, P., Hubert, L.: Cluster analysis in marketing research. In: Advanced Methods of Marketing Research. Blackwell Business, Cambridge, pp. 160–189 (1994)Google Scholar
  6. Araki, Y., Konishi, S., Kawano, S., Matsui, H.: Functional regression modeling via regularized Gaussian basis expansions. Ann. Inst. Stat. Math. 61(4), 811–833 (2009)MathSciNetGoogle Scholar
  7. Aston, J.A.D., Chiou, J.-M., Evans, J.: Linguistic pitch analysis using functional principal component mixed effect models. J. R. Stat. Soc. (Series C) 59(2), 297–317 (2010)MathSciNetGoogle Scholar
  8. Bali, J.L., Boente, G., Tyler, D.E., Wang, J.-L.: Robust functional principal components: a projection-pursuit approach. Ann. Stat. 39(6), 2852–2882 (2011)zbMATHMathSciNetGoogle Scholar
  9. Bathia, N., Yao, Q., Ziegelmann, F.: Identifying the finite dimensionality of curve time series. Ann. Stat. 38(6), 3352–3386 (2010)zbMATHMathSciNetGoogle Scholar
  10. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)zbMATHGoogle Scholar
  11. Benko, M., Härdle, W.: Common functional implied volatility analysis. In: Cizek, P., Härdle, W., Weron, R. (eds.) Statistical Tools for Finance and Insurance, pp. 115–134. Springer, Berlin (2005)Google Scholar
  12. Benko, M., Härdle, W., Kneip, A.: Common functional principal components. Ann. Stat. 37(1), 1–34 (2009)zbMATHGoogle Scholar
  13. Besse, P.: PCA stability and choice of dimensionality. Stat. Probab. Lett. 13(5), 405–410 (1992)zbMATHMathSciNetGoogle Scholar
  14. Boente, G., Rodriguez, D., Sued, M.: Inference under functional proportional and common principal component models. J. Multivariate Anal. 101(2), 464–475 (2010)zbMATHMathSciNetGoogle Scholar
  15. Bosq, D.: Linear Processes in Function Spaces: Theory and Applications. Springer, New York (2000)zbMATHGoogle Scholar
  16. Bouveyron, C., Jacques, J.: Model-based clustering of time series in group-specific functional subspaces. Adv. Data Anal. Classif. 5(4), 281–300 (2011)zbMATHMathSciNetGoogle Scholar
  17. Cardot, H., Faivre, R., Goulard, M.: Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing data. J. Appl. Stat. 30(10), 1185–1199 (2003)zbMATHMathSciNetGoogle Scholar
  18. Cardot, H., Ferraty, F., Mas, A., Sarda, P.: Testing hypotheses in the functional linear model. Scand. J. Stat. 30(1), 241–255 (2003)zbMATHMathSciNetGoogle Scholar
  19. Cardot, H., Ferraty, F., Sarda, P.: Functional linear model. Stat. Probab. Lett 45(1), 11–22 (1999)zbMATHMathSciNetGoogle Scholar
  20. Cardot, H., Mas, A., Sarda, P.: CLT in functional linear regression models. Probab. Theory Relat. Fields 138(3–4), 325–361 (2007)zbMATHMathSciNetGoogle Scholar
  21. Castro, P.E., Lawton, W.H., Sylvestre, E.A.: Principal modes of variation for processes with continuous sample curves. Technometrics 28(4), 329–337 (1986)zbMATHGoogle Scholar
  22. Cattell, R.B.: The screen test for the number of factors. Multivariate Behav. Res. 1(2), 245–276 (1966)Google Scholar
  23. Chiou, J.-M., Müller, H.-G.: Modeling hazard rates as functional data for the analysis of cohort lifetables and mortality forecasting. J. Am. Stat. Assoc. 104(486), 572–585 (2009)Google Scholar
  24. Chiou, J.-M., Müller, H.-G., Wang, J.-L.: Functional quasi-likelihood regression models with smooth random effects. J. R. Stat. Soc. Ser. B 65(2), 405–423 (2003a)zbMATHMathSciNetGoogle Scholar
  25. Chiou, J.-M., Müller, H.-G., Wang, J.-L., Carey, J.R.: A functional multiplicative effects model for longitudinal data, with application to reproductive histories of female medflies. Statistica Sinica 13(4), 1119–1133 (2003b)zbMATHMathSciNetGoogle Scholar
  26. Chiou, J.-M., Müller, H.-G., Wang, J.-L.: Functional response models. Statistica Sinica 14(3), 659–677 (2004)Google Scholar
  27. Coffey, N., Harrison, A.J., Donoghue, O.A., Hayes, K.: Common functional principal components analysis: a new approach to analyzing human movement data. Human Mov. Sci. 30(6), 1144–1166 (2011)Google Scholar
  28. Crainiceanu, C.M., Staicu, A.-M., Di, C.-Z.: Generalized multilevel functional regression. J. Am. Stat. Assoc. 104(488), 1550–1561 (2009)zbMATHMathSciNetGoogle Scholar
  29. Cuesta-Albertos, J. A., Nieto-Reyes, A.: Functional classification and the random Tukey depth. Practical issues. In: Borgelt, C., Rodriguez, G.G., Trutschnig, W., Lubiano, M.A., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds.) Combining Soft Computing and Statistical Methods in Data Analysis. Advances in Intelligent and Soft Computing, Vol. 77. Springer, Berlin, pp. 123–130 (2010)Google Scholar
  30. Cuevas, A., Febrero, M., Fraiman, R.: Linear functional regression: the case of fixed design and functional response. Can. J. Stat./La Revue Canadienne de Statistique 30(2), 285–300 (2002)zbMATHMathSciNetGoogle Scholar
  31. Cuevas, A., Febrero, M., Fraiman, R.: Robust estimation and classification for functional data via projection-based depth notions. Comput. Stat. 22(3), 481–496 (2007)zbMATHMathSciNetGoogle Scholar
  32. Cuevas, A., Fraiman, R.: On depth measures and dual statistics. A methodology for dealing with general data. J. Multivariate Anal. 100(4), 753–766 (2009)zbMATHMathSciNetGoogle Scholar
  33. Dauxois, J., Pousse, A., Romain, Y.: Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference. J. Multivariate Anal. 12(1), 136–154 (1982)zbMATHMathSciNetGoogle Scholar
  34. Davidian, M., Lin, X., Wang, J.-L.: Introduction: emerging issues in longitudinal and functional data analysis. Statistica Sinica 14(3), 613–614 (2004)MathSciNetGoogle Scholar
  35. Delaigle, A., Hall, P.: Achieving near perfect classification for functional data. J. R. Stat. Soc. Ser. B 74(2), 267–286 (2012)MathSciNetGoogle Scholar
  36. Delaigle, A., Hall, P., Bathia, N.: Componentwise classification and clustering of functional data. Biometrika 99(2), 299–313 (2012)zbMATHMathSciNetGoogle Scholar
  37. Di, C.-Z., Crainiceanu, C.M., Caffo, B.S., Punjabi, N.M.: Multilevel functional principal component analysis. Ann. Appl. Stat. 3(1), 458–488 (2009)zbMATHMathSciNetGoogle Scholar
  38. Eilers, P.H.C., Marx, B.D.: Flexible smoothing with \(B\)-splines and penalties (with discussion). Stat. Sci. 11(2), 89–121 (1996)zbMATHMathSciNetGoogle Scholar
  39. Fan, Y., James, G.: Functional additive regression. Working paper, University of Southern California. (2013)
  40. Faraway, J.J.: Regression analysis for a functional response. Technometrics 39(3), 254–261 (1997)zbMATHMathSciNetGoogle Scholar
  41. Febrero-Bande, M., González-Manteiga, W.: Generalized additive models for functional data. In: Ferraty, F. (ed.) Recent Advances in Functional Data Analysis and Related Topics. Contributions to Statistics. Springer, Heidelberg (2011)Google Scholar
  42. Fengler, M.R., Härdle, W.K., Villa, C.: The dynamics of implied volatilities: a common principal components approach. Rev. Deriv. Res. 6(3), 179–202 (2003)zbMATHGoogle Scholar
  43. Ferraty, F., Goia, A., Salinelli, E., Vieu, P.: Recent advances on functional additive regression. In: Ferraty, F. (ed.) Recent Advances in Functional Data Analysis and Related Topics, pp. 97–102. Springer, Heidelberg (2011)Google Scholar
  44. Ferraty, F., Romain, Y. (eds.): The Oxford Handbook of Functional Data Analysis. Oxford University Press, Oxford (2011)Google Scholar
  45. Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York (2006)Google Scholar
  46. Foutz, N., Jank, W.: Pre-release demand forecasting for motion pictures using functional shape analysis of virtual stock markets. Mark. Sci. 29(3), 568–579 (2010)Google Scholar
  47. Fraiman, R., Muniz, G.: Trimmed means for functional data. TEST 10(2), 419–440 (2001)zbMATHMathSciNetGoogle Scholar
  48. Geenens, G.: Curse of dimensionality and related issues in nonparametric functional regression. Stat. Surv. 5, 30–43 (2011)zbMATHMathSciNetGoogle Scholar
  49. Gervini, D.: Robust functional estimation using the median and spherical principal components. Biometrika 95(3), 587–600 (2008)zbMATHMathSciNetGoogle Scholar
  50. Gervini, D.: Outlier detection and trimmed estimation for general functional data. Statistica Sinica 22(4), 1639–1660 (2012)zbMATHMathSciNetGoogle Scholar
  51. Glendinning, R.H., Herbert, R.A.: Shape classification using smooth principal components. Pattern Recogn. Lett. 24(12), 2021–2030 (2003)Google Scholar
  52. González-Manteiga, W., Vieu, P.: Statistics for functional data (editorial). Comput. Stat. Data Anal. 51(10), 4788–4792 (2007)Google Scholar
  53. Green, P.J., Silverman, B.W.: Nonparametric Regression and Generalized Linear Models: a Roughness Penalty Approach. Chapman & Hall, London (1994)zbMATHGoogle Scholar
  54. Hall, P.: Principal component analysis for functional data: methodology, theory and discussion. In: The Oxford Handbook of Functional Data Analysis. Oxford University Press, Oxford, pp. 210–234 (2011)Google Scholar
  55. Hall, P., Horowitz, J.L.: Methodology and convergence rates for functional linear regression. Ann. Stat. 35(1), 70–91 (2007)zbMATHMathSciNetGoogle Scholar
  56. Hall, P., Hosseini-Nasab, M.: On properties of functional principal components analysis. J. R. Stat. Soc. Ser. B 68(1), 109–126 (2006)zbMATHMathSciNetGoogle Scholar
  57. Hall, P., Müller, H.-G., Wang, J.-L.: Properties of principal component methods for functional and longitudinal data analysis. Ann. Stat. 34(3), 1493–1517 (2006)zbMATHGoogle Scholar
  58. Hall, P., Poskitt, D.S., Presnell, B.: A functional data-analytic approach to signal discrimination. Technometrics 43(1), 1–9 (2001)zbMATHMathSciNetGoogle Scholar
  59. Hall, P., Vial, C.: Assessing the finite dimensionality of functional data. J. R. Stat. Soc. (Series B) 68(4), 689–705 (2006)zbMATHMathSciNetGoogle Scholar
  60. Harezlak, J., Coull, B.A., Laird, N.M., Magari, S.R., Christiani, D.C.: Penalized solutions to functional regression problems. Comput. Stat. Data Anal. 51(10), 4911–4925 (2007)zbMATHMathSciNetGoogle Scholar
  61. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a K-means clustering algorithm. J. R. Stat. Soc. Ser. C 28(1), 100–108 (1979)zbMATHGoogle Scholar
  62. Hastie, T., Buja, A., Tibshirani, R.: Penalized discriminant analysis. Ann. Stat. 23(1), 73–102 (1995)zbMATHMathSciNetGoogle Scholar
  63. Hlubinka, D., Prchal, L.: Changes in atmospheric radiation from the statistical point of view. Comput. Stat. Data Anal. 51(10), 4926–4941 (2007)zbMATHMathSciNetGoogle Scholar
  64. Hoerl, A.E.: Application of ridge analysis to regression problems. Chem. Eng. Prog. 58(3), 54–59 (1962)Google Scholar
  65. Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer, New York (2012)zbMATHGoogle Scholar
  66. Horváth, L., Reeder, R.: A test of significance in functional quadratic regression. Working paper, University of Utah. (2011)
  67. Huang, D.-S., Zheng, C.-H.: Independent component analysis-based penalized discriminant method for tumor classification using gene-expression data. Bioinformatics 22(15), 1855–1862 (2006)Google Scholar
  68. Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Accessed 8 March 2012 (2012)
  69. Hyndman, R.J.: Computing and graphing highest density regions. Am. Stat. 50(2), 120–126 (1996)MathSciNetGoogle Scholar
  70. Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with Exponential Smoothing: The State Space Approach. Springer, Berlin (2008)Google Scholar
  71. Hyndman, R.J., Shang, H.L.: Forecasting functional time series (with discussion). J. Korean Stat. Soc. 38(3), 199–221 (2009)MathSciNetGoogle Scholar
  72. Hyndman, R.J., Shang, H.L.: Rainbow plots, bagplots, and boxplots for functional data. J. Comput. Graph. Stat. 19(1), 29–45 (2010)MathSciNetGoogle Scholar
  73. Hyndman, R.J., Ullah, M.S.: Robust forecasting of mortality and fertility rates: a functional data approach. Comput. Stat. Data Anal. 51(10), 4942–4956 (2007)zbMATHGoogle Scholar
  74. Illian, J.B., Prosser, J.I., Baker, K.L., Rangel-Castro, J.I.: Functional principal component data analysis: a new method for analysing microbial community fingerprints. J. Microbiol. Methods 79(1), 89–95 (2009)Google Scholar
  75. James, G.M.: Generalized linear models with functional predictors. J. R. Stat. Soc. Ser. B 64(3), 411–432 (2002)zbMATHMathSciNetGoogle Scholar
  76. James, G.M., Hastie, T.J.: Functional linear discriminant analysis for irregularly sampled curves. J. R. Stat. Soc. Ser. B 63(3), 533–550 (2001)zbMATHMathSciNetGoogle Scholar
  77. James, G.M., Hastie, T.J., Sugar, C.A.: Principal component models for sparse functional data. Biometrika 87(3), 587–602 (2000)zbMATHMathSciNetGoogle Scholar
  78. James, G.M., Silverman, B.W.: Functional adaptive model estimation. J. Am. Stat. Assoc. 100(470), 565–576 (2005)zbMATHMathSciNetGoogle Scholar
  79. James, G.M., Sugar, C.A.: Clustering for sparsely sampled functional data. J. Am. Stat. Assoc. 98(462), 397–408 (2003)zbMATHMathSciNetGoogle Scholar
  80. Jank, W., Yahav, I.: E-loyalty networks in online auctions. Ann. Appl. Stat. 4(1), 151–178 (2010)zbMATHMathSciNetGoogle Scholar
  81. Jones, M.C., Rice, J.A.: Displaying the important features of large collections of similar curves. Am. Stat. 46(2), 140–145 (1992)Google Scholar
  82. Karhunen, K.: Zur spektraltheorie stochastischer prozesse. Annales Academiae Scientiarum Fennicae 37, 1–37 (1946)Google Scholar
  83. Kayano, M., Konishi, S.: Sparse functional principal component analysis via regularized basis expansions and its application. Commun. Stat. Simul. Comput. 39(7), 1318–1333 (2010)MathSciNetGoogle Scholar
  84. Krämer, N., Boulesteix, A.-L., Tutz, G.: Penalized partial least squares with applications to B-spline transformations and functional data. Chemometr. Intell. Lab. Systems 94(1), 60–69 (2008)Google Scholar
  85. Lee, H.-J. (2004), Functional data analysis: classification and regression. PhD thesis, Texas A & M University.
  86. Locantore, N., Marron, J.S., Simpson, D.G., Tripoli, N., Zhang, J.T., Cohen, K.L.: Robust principal component analysis for functional data. TEST 8(1), 1–73 (1999)zbMATHMathSciNetGoogle Scholar
  87. Loève, M.: Fonctions aléatoires a decomposition orthogonale exponentielle. La Revue Scientifique 84, 159–162 (1946)zbMATHGoogle Scholar
  88. López-Pintado, S., Romo, J.: Depth-based inference for functional data. Comput. Stat. Data Anal. 51(10), 4957–4968 (2007)zbMATHGoogle Scholar
  89. López-Pintado, S., Romo, J.: On the concept of depth for functional data. J. Am. Stat. Assoc. 104(486), 718–734 (2009)Google Scholar
  90. Mas, A.: Weak convergence for the covariance operators of a Hilbertian linear process. Stoch. Process. Appl. 99(1), 117–135 (2002)zbMATHMathSciNetGoogle Scholar
  91. Mas, A.: Local functional principal component analysis. Complex Anal. Oper. Theory 2(1), 135–167 (2008)zbMATHMathSciNetGoogle Scholar
  92. Mas, A., Pumo, B.: The ARHD model. J. Stat. Plan. Inference 137(2), 538–553 (2007)zbMATHMathSciNetGoogle Scholar
  93. Mas, A., Pumo, B.: Functional linear regression with derivatives. J. Nonparametr. Stat. 21(1), 19–40 (2009)zbMATHMathSciNetGoogle Scholar
  94. Matsui, H., Araki, Y., Konishi, S.: Multivariate regression modeling for functional data. J. Data Sci. 6(3), 313–331 (2008)Google Scholar
  95. Müller, H.-G., Stadtmüller, U.: Generalized functional linear models. Ann. Stat. 33(2), 774–805 (2005)zbMATHGoogle Scholar
  96. Müller, H.-G., Yao, F.: Additive modelling of functional gradients. Biometrika 97(4), 791–805 (2010)zbMATHMathSciNetGoogle Scholar
  97. Müller, H., Yao, F.: Functional additive models. J. Am. Stat. Assoc. 103(484), 1534–1544 (2008)Google Scholar
  98. Pezzulli, S., Silverman, B.W.: Some properties of smoothed principal components analysis for functional data. Comput. Stat. 8, 1–16 (1993)zbMATHMathSciNetGoogle Scholar
  99. Poskitt, D.S., Sengarapillai, A.: Description length and dimensionality reduction in functional data analysis. Comput. Stat. Data Anal. 58(2), 98–113 (2013)MathSciNetGoogle Scholar
  100. Preda, C., Saporta, G.: PLS regression on a stochastic process. Comput. Stat. Data Anal. 48(1), 149–158 (2005)zbMATHMathSciNetGoogle Scholar
  101. Preda, C., Saporta, G., Lévéder, C.: PLS classification of functional data. Comput. Stat. 22(2), 223–235 (2007)zbMATHGoogle Scholar
  102. Ramsay, J.O.: Monotone regression splines in action. Stat. Sci. 3(4), 425–441 (1988)Google Scholar
  103. Ramsay, J.O.: Functional components of variation in handwriting. J. Am. Stat. Assoc. 95(449), 9–15 (2000)Google Scholar
  104. Ramsay, J.O., Dalzell, C.J.: Some tools for functional data analysis (with discussion). J. R. Stat. Soc. Ser. B 53(3), 539–572 (1991)zbMATHMathSciNetGoogle Scholar
  105. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, New York (1997)zbMATHGoogle Scholar
  106. Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis: Methods and Case Studies. Springer, New York (2002)Google Scholar
  107. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, New York (2005)Google Scholar
  108. Rao, C.R.: Some statistical methods for comparison of growth curves. Biometrics 14(1), 1–17 (1958)zbMATHGoogle Scholar
  109. Reiss, P.T., Ogden, R.T.: Functional principal component regression and functional partial least squares. J. Am. Stat. Assoc. 102(479), 984–996 (2007)zbMATHMathSciNetGoogle Scholar
  110. Rice, J.A.: Functional and longitudinal data analysis: perspectives on smoothing. Statistica Sinica 14(3), 631–647 (2004)zbMATHMathSciNetGoogle Scholar
  111. Rice, J.A., Silverman, B.W.: Estimating the mean and covariance structure nonparametrically when the data are curves. J. R. Stat. Soc. Ser. B 53(1), 233–243 (1991)zbMATHMathSciNetGoogle Scholar
  112. Rice, J., Wu, C.: Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics 57(1), 253–259 (2001)zbMATHMathSciNetGoogle Scholar
  113. Rossi, F., Conan-Guez, B., El Golli, A.: Clustering functional data with the SOM algorithm. In: European Symposium on Artificial, Neural Networks, pp. 305–312 (2004)Google Scholar
  114. Rousseeuw, P.J., Ruts, I., Tukey, J.W.: The bagplot: a bivariate boxplot. Am. Stat. 53(4), 382–387 (1999)Google Scholar
  115. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New York (1992)zbMATHGoogle Scholar
  116. Shang, H.L., Hyndman, R.J.: Nonparametric time series forecasting with dynamic updating. Math. Comput. Simul. 81(7), 1310–1324 (2011)zbMATHMathSciNetGoogle Scholar
  117. Shen, H.: On modeling and forecasting time series of smooth curves. Technometrics 51(3), 227–238 (2009)MathSciNetGoogle Scholar
  118. Shibata, R.: An optimal selection of regression variables. Biometrika 68(1), 45–54 (1981)zbMATHMathSciNetGoogle Scholar
  119. Silverman, B.W.: Smoothed functional principal components analysis by choice of norm. Ann. Stat. 24(1), 1–24 (1996)zbMATHGoogle Scholar
  120. Song, J.J., Deng, W., Lee, H.-J., Kwon, D.: Optimal classification for time-course gene expression data using functional data analysis. Comput. Biol. Chem. 32(6), 426–432 (2008)zbMATHMathSciNetGoogle Scholar
  121. Sood, A., James, G.M., Tellis, G.J.: Functional regression: a new model for predicting market penetration of new products. Mark. Sci. 28(1), 36–51 (2009)Google Scholar
  122. Suyundykov, R., Puechmorel, S., Ferre, L.: Multivariate functional data clusterization by PCA in Sobolev space using wavelets. Technical report, University of Toulouse. (2010)
  123. Tarpey, T.: Linear transformations and the \(k\)-means clustering algorithm: applications to clustering curves. Am. Stat. 61(1), 34–40 (2007)MathSciNetGoogle Scholar
  124. Tran, N. M.: An introduction to theoretical properties of functional principal component analysis. Honours thesis, The University of Melbourne. (2008)
  125. Tu, I.-P., Chen, H., Chen, X.: An eigenvector variability plot. Statistica Sinica 19(4), 1741–1754 (2009)zbMATHMathSciNetGoogle Scholar
  126. Tucker, L.R.: Determination of parameters of a functional relation by factor analysis. Psychometrika 23(1), 19–23 (1958)zbMATHGoogle Scholar
  127. Tukey, J.W.: Mathematics and the picturing of data. In: James, R.D. (ed.) Proceedings of the International Congress of Mathematicians, vol. 2, pp. 523–531. Canadian mathematical congress, Vancouver (1974)Google Scholar
  128. Valderrama, M.J.: An overview to modelling functional data (editorial). Comput. Stat. 22(3), 331–334 (2007)MathSciNetGoogle Scholar
  129. Wahba, G.: Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia (1990)zbMATHGoogle Scholar
  130. Weidmann, J.: Linear Operators in Hilbert Spaces. Springer, New York (1980)zbMATHGoogle Scholar
  131. Yamamoto, M.: Clustering of functional data in a low-dimensional subspace. Adv. Data Anal. Classif. 6(3), 219–247 (2012)MathSciNetGoogle Scholar
  132. Yao, F., Fu, Y., Lee, T.C.M.: Functional mixture regression. Biostatistics 12(2), 341–353 (2011)Google Scholar
  133. Yao, F., Lee, T.C.M.: Penalized spline models for functional principal component analysis. J. R. Stat. Soc. Ser. B 68(1), 3–25 (2006)zbMATHMathSciNetGoogle Scholar
  134. Yao, F., Müller, H.-G.: Functional quadratic regression. Biometrika 97(1), 49–64 (2010)zbMATHMathSciNetGoogle Scholar
  135. Yao, F., Müller, H.-G., Wang, J.-L.: Functional data analysis for sparse longitudinal data. J. Am. Stat. Assoc. 100(470), 577–590 (2005a)zbMATHGoogle Scholar
  136. Yao, F., Müller, H.-G., Wang, J.-L.: Functional linear regression analysis for longitudinal data. Ann. Stat. 33(6), 2873–2903 (2005b)zbMATHGoogle Scholar
  137. Zhou, L., Huang, J.Z., Carroll, R.J.: Joint modelling of paired sparse functional data using principal components. Biometrika 95(3), 601–619 (2008)zbMATHMathSciNetGoogle Scholar
  138. Zipunnikov, V., Caffo, B., Yousem, D.M., Davatzikos, C., Schwartz, B.S., Crainiceanu, C.: Multilevel functional principal component analysis for high-dimensional data. J. Comput. Graph. Stat. 20(4), 852–873 (2011)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.ESRC Centre for Population ChangeUniversity of SouthamptonSouthamptonUK

Personalised recommendations