Skip to main content
Log in

Detecting serial dependencies with the reproducibility probability autodependogram

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript


The autodependogram is a graphical device recently proposed in the literature to analyze autodependencies. This paper proposes a normalization of this diagram taking into consideration the concept of reproducibility probability (RP). The result is a novel tool, named RP-autodependogram, which permits to study the strength and the stability of the evidence about the presence of lag-dependence. A simulation study on well-established time-series models is carried out to investigate the behavior of the RP-autodependogram also in comparison with other diagrams studying autodependencies. An application to financial data is finally considered to appreciate its usefulness in the identification of parametric/nonparametric models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others


  • Bagnato, L.: Nonparametric ARCH with additive mean and multiplicative volatility:a new estimation procedure. Statistica & Applicazioni VII(1), 63–76 (2009)

    Google Scholar 

  • Bagnato, L., Punzo, A.: On the use of \(\chi ^2\)-test to check serial independence. Statistica & Applicazioni VIII(1), 57–74 (2010)

    Google Scholar 

  • Bagnato, L., Punzo, A.: Checking serial independence of residuals from a nonlinear model. In: Okada, A., Imaizumi, T., Bock, H.-H., Gaul, W. (eds.) Challenges at the interface of data analysis, computer science, and optimization, studies in classification, data analysis and knowledge organization, pp. 203–211. Springer, Berlin-Heidelberg (2012)

  • Bagnato, L., Punzo, A.: Using the autodependogram in model diagnostic checking. In: Torelli, N., Pesarin, F., Bar-Hen, A. (eds.) Advances in theoretical and applied statistics. Studies in classification, data analysis and knowledge organization. Springer, Berlin-Heidelberg (2013)

    Google Scholar 

  • Bagnato, L., Punzo, A., Nicolis, O.: The autodependogram: a graphical device to investigate serial dependences. J Time Ser Anal 33(2), 233–254 (2012)

    Article  MathSciNet  Google Scholar 

  • Bagnato, L., De Capitani, L., Punzo, A.: Testing serial independence via density-based measures of divergence. (To appear in Methodol Comput Appl Probab.) (2013). doi:10.1007/s11009-013-9320-4

  • Bollerslev, T., Chou, R., Kroner, K.: ARCH modeling in finance: a review of the theory and empirical evidence. J. Econometr. 52(1), 5–59 (1992)

    Article  MATH  Google Scholar 

  • Boos, D., Stefanski, L.: P-value precision and reproducibility. Am. Stat. 65(4), 213–221 (2011)

    Article  MathSciNet  Google Scholar 

  • Cochran, W.G.: Some methods for strengthening the common \(\chi ^2\) tests. Biometrics 10(4), 417–451 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  • De Capitani, L., De Martini, D.: On stochastic orderings of the Wilcoxon rank sum test statistic—with applications to reproducibility probability estimation testing. Stat. Probab. Lett. 81(8), 937–946 (2011)

    Google Scholar 

  • De Martini, D.: Reproducibility probability estimation for testing statistical hypotheses. Stat. Probab. Lett. 78(9), 1056–1061 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • De Martini, D.: Stability criteria for the outcomes of statistical tests to assess drug effectiveness with a single study. Pharm. Stat. 11(4), 273–279 (2012)

    Article  Google Scholar 

  • Diks, C.: Nonparametric tests for independence. In: Meyers, R.A. (ed.) Encyclopedia of complexity and systems Science, pp. 6252–6271. Springer, New York (2009)

    Chapter  Google Scholar 

  • Goodman, S.: A comment on replication, \(p\)-values and evidence. Stat. Med. 11(7), 875–879 (1992)

    Google Scholar 

  • Johnson, N., Kotz, S., Balakrishnan, N.: Continuous univariate distributions, vol. 2. Wiley, New York (1995)

    MATH  Google Scholar 

  • Lehmann, E.: Testing statistical hypotheses. Springer, New York (1997)

    MATH  Google Scholar 

  • Mann, H.B., Wald, A.: On the choice of the number of intervals in the application of the chi-square test. Ann. Math. Stat. 13(3), 306–317 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  • R Development Core Team: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. ISBN: 3-900051-07-0 (2012)

  • Yang, L., Härdle, W., Nielsen, J.P.: Nonparametric autoregression with multiplicative volatility and additive mean. J. Time Ser. Anal. 20(5), 579–604 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou, Z.: Measuring nonlinear dependence in time-series, a distance correlation approach. J. Time Ser. Anal. 33(3), 438–457 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Antonio Punzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagnato, L., De Capitani, L. & Punzo, A. Detecting serial dependencies with the reproducibility probability autodependogram. AStA Adv Stat Anal 98, 35–61 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: