Detecting serial dependencies with the reproducibility probability autodependogram


The autodependogram is a graphical device recently proposed in the literature to analyze autodependencies. This paper proposes a normalization of this diagram taking into consideration the concept of reproducibility probability (RP). The result is a novel tool, named RP-autodependogram, which permits to study the strength and the stability of the evidence about the presence of lag-dependence. A simulation study on well-established time-series models is carried out to investigate the behavior of the RP-autodependogram also in comparison with other diagrams studying autodependencies. An application to financial data is finally considered to appreciate its usefulness in the identification of parametric/nonparametric models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. Bagnato, L.: Nonparametric ARCH with additive mean and multiplicative volatility:a new estimation procedure. Statistica & Applicazioni VII(1), 63–76 (2009)

    Google Scholar 

  2. Bagnato, L., Punzo, A.: On the use of \(\chi ^2\)-test to check serial independence. Statistica & Applicazioni VIII(1), 57–74 (2010)

    Google Scholar 

  3. Bagnato, L., Punzo, A.: Checking serial independence of residuals from a nonlinear model. In: Okada, A., Imaizumi, T., Bock, H.-H., Gaul, W. (eds.) Challenges at the interface of data analysis, computer science, and optimization, studies in classification, data analysis and knowledge organization, pp. 203–211. Springer, Berlin-Heidelberg (2012)

  4. Bagnato, L., Punzo, A.: Using the autodependogram in model diagnostic checking. In: Torelli, N., Pesarin, F., Bar-Hen, A. (eds.) Advances in theoretical and applied statistics. Studies in classification, data analysis and knowledge organization. Springer, Berlin-Heidelberg (2013)

    Google Scholar 

  5. Bagnato, L., Punzo, A., Nicolis, O.: The autodependogram: a graphical device to investigate serial dependences. J Time Ser Anal 33(2), 233–254 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bagnato, L., De Capitani, L., Punzo, A.: Testing serial independence via density-based measures of divergence. (To appear in Methodol Comput Appl Probab.) (2013). doi:10.1007/s11009-013-9320-4

  7. Bollerslev, T., Chou, R., Kroner, K.: ARCH modeling in finance: a review of the theory and empirical evidence. J. Econometr. 52(1), 5–59 (1992)

    Article  MATH  Google Scholar 

  8. Boos, D., Stefanski, L.: P-value precision and reproducibility. Am. Stat. 65(4), 213–221 (2011)

    Article  MathSciNet  Google Scholar 

  9. Cochran, W.G.: Some methods for strengthening the common \(\chi ^2\) tests. Biometrics 10(4), 417–451 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  10. De Capitani, L., De Martini, D.: On stochastic orderings of the Wilcoxon rank sum test statistic—with applications to reproducibility probability estimation testing. Stat. Probab. Lett. 81(8), 937–946 (2011)

    Google Scholar 

  11. De Martini, D.: Reproducibility probability estimation for testing statistical hypotheses. Stat. Probab. Lett. 78(9), 1056–1061 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. De Martini, D.: Stability criteria for the outcomes of statistical tests to assess drug effectiveness with a single study. Pharm. Stat. 11(4), 273–279 (2012)

    Article  Google Scholar 

  13. Diks, C.: Nonparametric tests for independence. In: Meyers, R.A. (ed.) Encyclopedia of complexity and systems Science, pp. 6252–6271. Springer, New York (2009)

    Google Scholar 

  14. Goodman, S.: A comment on replication, \(p\)-values and evidence. Stat. Med. 11(7), 875–879 (1992)

    Google Scholar 

  15. Johnson, N., Kotz, S., Balakrishnan, N.: Continuous univariate distributions, vol. 2. Wiley, New York (1995)

    MATH  Google Scholar 

  16. Lehmann, E.: Testing statistical hypotheses. Springer, New York (1997)

    MATH  Google Scholar 

  17. Mann, H.B., Wald, A.: On the choice of the number of intervals in the application of the chi-square test. Ann. Math. Stat. 13(3), 306–317 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  18. R Development Core Team: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. ISBN: 3-900051-07-0 (2012)

  19. Yang, L., Härdle, W., Nielsen, J.P.: Nonparametric autoregression with multiplicative volatility and additive mean. J. Time Ser. Anal. 20(5), 579–604 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhou, Z.: Measuring nonlinear dependence in time-series, a distance correlation approach. J. Time Ser. Anal. 33(3), 438–457 (2012)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Antonio Punzo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bagnato, L., De Capitani, L. & Punzo, A. Detecting serial dependencies with the reproducibility probability autodependogram. AStA Adv Stat Anal 98, 35–61 (2014).

Download citation


  • Nonlinear time series
  • Autodependencies
  • Autocorrelogram
  • Autodependogram
  • Reproducibility probability