Skip to main content
Log in

An application of cartographic area interpolation to German administrative data

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

In many situations the applied researcher wishes to combine different data sources without knowing the exact link and merging rule. This paper considers different cartographic interpolation methods for interpolating attributes from German employment office districts to German counties and vice versa. In particular, we apply dasymetric weighting as an alternative to simple area weighting, both of which are based on estimated intersection areas. We also present conditions under which the choice of interpolation method does not matter and confirm the theoretical results with a simulation study. Our application to German administrative data suggests robustness of estimation results of interpolated attributes with respect to the choice of interpolation method. We provide weighting matrices for regional data sources of the two largest German data producers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbia, G. (1989) Statistical effect of data transformations: a proposed general framework. In: Goodchild, M., Gopal, S. (eds.), The Accuracy of Spatial Databases. London, Taylor and Friends

    Google Scholar 

  2. Bender, S., Haas, A., Klose, C. (2000) The IAB Employment Subsample 1975–1995. Schmollers Jahrbuch 120, 649–662

    Google Scholar 

  3. Best, N.G., Ickstadt, K., Wolpert, R.L. (2000) Spatial Poisson regression for health and exposure data measured at disparate resolutions. Journal of the American Statistical Association 95, 1076–1088

    Article  MATH  MathSciNet  Google Scholar 

  4. Bracken, I., Martin, D. (1989) The generation of spatial population distributions from census centroid data. Environment and Planning A 21, 537–543

    Article  Google Scholar 

  5. Bracken, I. (1993) An extensive surface model database for population-related information: concept and application. Environment and Planning B: Planning and Design 20, 13–27

    Article  Google Scholar 

  6. Bracken, I. (1994) A surface model approach to the representation of population-related social indicators. In: Fotheringham, S., Rogerson, P. (eds.): Spatial Analysis and GIS. Taylor and Francis, London

    Google Scholar 

  7. Burrough, P.A. (1986) Principles of Geographical Information Systems for Land Resources Assessment. Clarendon Press, Oxford

    Google Scholar 

  8. Chrisman, N.R. (1989) Modeling error in overlaid categorical maps. In: Goodchild, M.F., Gopal, S. (eds.): The Accuracy of Spatial Databases. Taylor and Francis, London

    Google Scholar 

  9. Cox, D.R. (1972) Regression models and life tables. Journal of the Statistical Society B 34, 187–220

    MATH  Google Scholar 

  10. Cressie, N. (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  11. Eicher, C.L., Brewer, C.A. (2001) Dasymetric mapping and areal interpolation: implementation and evaluation. Cartography and Geographic Information Science 28, 125–138

    Article  Google Scholar 

  12. Elstrodt, J. (1999) Maß- und Integrationstheorie. Springer, Berlin

    MATH  Google Scholar 

  13. Fisher, P.F., Langford, M. (1995) Modeling the errors in areal interpolation between zonal systems using Monte Carlo simulation. Environment and Planning A 27, 211–224

    Article  Google Scholar 

  14. Fitzenberger, B., Wilke, R.A. (2004) Unemployment Durations in West-Germany Before and After the Reform of the Unemployment Compensation System during the 1980ties. ZEW Discussion Paper 04–24. Mannheim

  15. Flowerdew, R., Green, M. (1989) Statistical methods for inference between incompatible zonal systems. Papers in Regional Science 70, 303–315

    Article  Google Scholar 

  16. Flowerdew, R., Green, M. (1992) Developments in areal interpolating methods and GIS. Annals of Regional Science 70, 303–315

    Google Scholar 

  17. Goodchild, M.F., Lam, N.S.-N. (1980) Areal interpolation: a variant of the traditional spatial problem. Geo-Processing 1, 297–312

    Google Scholar 

  18. Goodchild, M.F., Anselin, L., Deichmann, U. (1993) A framework for the areal interpolation of socioeconomic data. Environment and Planning A 25, 383–397

    Article  Google Scholar 

  19. Goodchild, M.F. (2004) A general framework for error analysis in measurement-based GIS. Journal of Geographical Systems 6, 323–324

    Article  Google Scholar 

  20. Gotway, C.A., Young L.J. (2002) Combining incompatible spatial data. Journal of the American Statistical Association 97, 632–648

    Article  MATH  MathSciNet  Google Scholar 

  21. Judge, G.G., Yancey, T.A. (1986) Improved methods of inference in econometrics. North-Holland, Amsterdam

    MATH  Google Scholar 

  22. Kalbfleisch, J.D., Prentice, R.L. (1980) The statistical analysis of failure time data. Wiley, New York

    MATH  Google Scholar 

  23. Langford, M., Maguire, D.J., Unwin, D.J. (1991) The areal interpolation problem: estimating population using remote sensing in a GIS framework. In: Masser, I., Blakemoore, M. (eds.): Handling Geographical Information: Methodology and Potential Applications. Longman, Harlow

    Google Scholar 

  24. Leung, Y., Ma, J., Goodchild, M.F. (2004) A general framework for error analysis in measurement-based GIS Part 3: Error analysis in intersections and overlays. Journal of Geographical Systems 6, 381–402

    Article  Google Scholar 

  25. Lin, D.Y., Wei, L.J. (1989) The robust inference for the Cox proportional hazards model. Journal of the American Statistical Association 84, 1074–1078

    Article  MATH  MathSciNet  Google Scholar 

  26. Mugglin, A.S., Carlin, B.P. (1998) Hierarchical modeling in geographic information systems: population interpolation over incompatible zones. Journal of Agricultural, Biological and Environmental Statistics 3, 111–130

    Article  MathSciNet  Google Scholar 

  27. Mugglin, A.S., Carlin, B.P., Gelfand, A.E. (2000) Fully model-based approaches for spatially misaligned data. Journal of the American Statistical Association 95, 877–887

    Article  Google Scholar 

  28. Openshaw, S., Taylor, P. (1981) The modifiable areal unit problem. In: Wrigley, N., Bennett, R. (eds.): Quantitative Geography: A British View. Routledge and Kegan Paul Ltd, London

    Google Scholar 

  29. Ridder, G., Tunali, I. (1999) Stratified partial likelihood estimation. Journal of Econometrics 92, 193–232

    Article  MATH  Google Scholar 

  30. Statistische Ämter des Bundes und der Länder: Statistik Regional. Daten für die Kreise und kreisfreien Städte Deutschlands. Wiesbaden 1999

  31. Tobler, W.R. (1979) Smooth pycnophylactic interpolation for geographical regions. Journal of the American Statistical Association 74, 519–530

    Article  MathSciNet  Google Scholar 

  32. Veregin, H. (1989) Error modeling for the map overlay operation. In: Goodchild, M.F., Gopal, S. (eds.): The Accuracy of Spatial Databases. Taylor and Francis Ltd, London

    Google Scholar 

  33. Yuan, Y., Smith, R.M., Limp, W.F. (1997) Remodeling census population with spatial information from landsat TM imagery. Computers, Environment and Urban Systems 21, 245–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Arntz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arntz, M., Wilke, R. An application of cartographic area interpolation to German administrative data . AStA 91, 159–180 (2007). https://doi.org/10.1007/s10182-007-0022-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-007-0022-5

Keywords

Navigation