Skip to main content

Advertisement

Log in

Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation

  • Original Article
  • Published:
Modern Rheumatology

Abstract

Objectives

MicroRNAs, a class of noncoding RNAs, play roles in human diseases. MicroRNA-223 (miR-223) is reported to play critical roles in osteoclastogenesis. The purpose of this study was to analyze the expression pattern of miR-223 in rheumatoid arthritis (RA) synovium and examine the suppression of osteoclastogenesis from human peripheral blood mononuclear cells (PBMC) by overexpression of miR-223.

Methods

Expression of miR-223 in synovium from RA patients was analyzed by quantitative reverse transcription polymerase chain reaction (RT-PCR) and section in situ hybridization. MiR-223 was overexpressed in an osteoclastogenesis coculture system with PBMC and RA synovial fibroblast. At 3 weeks after transfection of double-stranded miR-223, the formation of tartrate-resistant acid phosphatase (TRAP)-stained multinucleated cells was analyzed to evaluate the inhibitory effect of miR-223 on osteoclastogenesis.

Results

MiR-223 was more highly expressed in RA synovium than in osteoarthritis (OA) synovium due to the increased number of miR-223-positive cells in RA synovium. MiR-223 was expressed in the superficial and sublining layers, and macrophages, monocytes, and CD4 T cells also expressed miR-223. The number of TRAP-positive multinucleated cells was significantly decreased by overexpression of miR-223 in a dose-dependent manner. The expression of osteoclastogenesis marker genes was significantly down-regulated by miR-223 overexpression.

Conclusion

MiR-223 is intensely expressed in RA synovium, and overexpression of miR-223 suppresses osteoclastogenesis in vitro. This study demonstrates the possibility of gene therapy with miR-223 to treat bone destruction in RA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

miR:

Micro ribonucleic acid

PBMC:

Peripheral blood mononuclear cells

RA:

Rheumatoid arthritis

RASF:

RA synovial fibroblasts

siRNA:

Small interfering RNA

TRAP:

Tartrate-resistant acid phosphatase

RANKL:

Receptor activator of nuclear factor-κB ligand

OPG:

Osteoprotegerin

PCR:

Polymerase chain reaction

TNF-α:

Tumor necrosis factor-α

IL-1:

Interleukin-1

IL-6:

Interleukin-6

RISC:

RNA-induced silencing complex

NFATc1:

Nuclear factor of activated T cell-1

NFI-A:

Nuclear factor I-A

C/EBP:

CCAAT/enhancer binding protein

M-CSF:

Macrophage colony-stimulating factor

DPBS-E:

Dulbecco’s phosphate buffered saline–EDTA

EDTA:

Ethylene diamine tetra acetic acid

UTR:

Untranslated region

References

  1. Gardner DL. Rheumatoid arthritis: cell and tissue pathology: In: Pathological basis of the connective tissue diseases. London: Edward Arnold; 1992. p. 444–526.

  2. Goldring MB. Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep. 2000;2(6):459–65.

    Article  PubMed  CAS  Google Scholar 

  3. Arend WP, Dayer JM. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum. 1995;38(2):151–60.

    Article  PubMed  CAS  Google Scholar 

  4. Romas E, Gillespie MT, Martin TJ. Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone. 2002;30(2):340–6.

    Article  PubMed  CAS  Google Scholar 

  5. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  PubMed  CAS  Google Scholar 

  6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  7. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.

    Article  PubMed  CAS  Google Scholar 

  8. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 2005;310(5755):1817–21.

    Article  PubMed  CAS  Google Scholar 

  9. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4.

    Article  PubMed  CAS  Google Scholar 

  10. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235–40.

    Article  PubMed  CAS  Google Scholar 

  11. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.

    Article  PubMed  CAS  Google Scholar 

  12. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524–9.

    Article  PubMed  CAS  Google Scholar 

  13. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;53(17):1793–801.

    Article  Google Scholar 

  14. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101(9):2999–3004.

    Article  PubMed  CAS  Google Scholar 

  15. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, et al. A cellular microRNA mediates antiviral defense in human cells. Science. 2005;08(5721):557–60.

    Article  Google Scholar 

  16. Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1(12):882–91.

    PubMed  CAS  Google Scholar 

  17. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58(5):1284–92.

    Article  PubMed  CAS  Google Scholar 

  18. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008;10(4):R101.

    Article  PubMed  Google Scholar 

  19. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008;58(4):1001–9.

    Article  PubMed  Google Scholar 

  20. Sugatani T, Hruska KA. MicroRNA-223 is a key factor in osteoclast differentiation. J Cell Biochem. 2007;101(4):996–9.

    Article  PubMed  CAS  Google Scholar 

  21. Nishida K, Komiyama T, Miyazawa S, Shen ZN, Furumatsu T, Doi H, et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 2004;50(10):3365–76.

    Article  PubMed  CAS  Google Scholar 

  22. Lee EY, Lee CK, Lee KU, Park JY, Cho KJ, Cho YS, et al. Alpha-lipoic acid suppresses the development of collagen-induced arthritis and protects against bone destruction in mice. Rheumatol Int. 2007;27(3):225–33.

    Article  PubMed  CAS  Google Scholar 

  23. Khosla S. Minireview the OPG/RANKL/RANK system. Endocrinology. 2001;142(12):5050–5.

    Article  PubMed  CAS  Google Scholar 

  24. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106(12):1481–8.

    Article  PubMed  CAS  Google Scholar 

  25. Sugatani T, Hruska KA. Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem. 2009;284(7):4667–78.

    Article  PubMed  CAS  Google Scholar 

  26. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9.

    Article  PubMed  Google Scholar 

  27. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007;104(39):15472–7.

    Article  PubMed  CAS  Google Scholar 

  28. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486–91.

    Article  PubMed  CAS  Google Scholar 

  29. Jia CY, Li HH, Zhu XC, Dong YW, Fu D, Zhao QL, et al. MiR-223 suppresses cell proliferation by targeting IGF-1R. PLoS One. 2011;6(11):e27008.

    Article  PubMed  CAS  Google Scholar 

  30. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell. 2005;123(5):819–31.

    Article  PubMed  CAS  Google Scholar 

  31. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell. 2007;129(3):617–31.

    Article  PubMed  CAS  Google Scholar 

  32. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451(7182):1125–9.

    Article  PubMed  CAS  Google Scholar 

  33. Crotti TN, Sharma SM, Fleming JD, Flannery MR, Ostrowski MC, Goldring SR, et al. PU.1 and NFATc1 mediate osteoclastic induction of the mouse beta3 integrin promoter. J Cell Physiol. 2008;215(3):636–44.

    Article  PubMed  CAS  Google Scholar 

  34. Luchin A, Suchting S, Merson T, Rosol TJ, Hume DA, Cassady AI, et al. Genetic and physical interactions between Microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J Biol Chem. 2001;276(39):36703–10.

    Article  PubMed  CAS  Google Scholar 

  35. Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature. 1997;386(6620):81–4.

    Article  PubMed  CAS  Google Scholar 

  36. Boldin M, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208(6):1189–201.

    Article  PubMed  CAS  Google Scholar 

  37. Khoury M, Escriou V, Courties G, Galy A, Yao R, Largeau C, et al. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum. 2008;58(8):2356–67.

    Article  PubMed  CAS  Google Scholar 

  38. Lu PY, Woodle MC. Delivering small interfering RNA for novel therapeutics. Methods Mol Biol. 2008;437:93–107.

    Article  PubMed  CAS  Google Scholar 

  39. Nakasa T, Ishikawa M, Shi M, Shibuya H, Adachi N, Ochi M. Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J Cell Mol Med. 2010;14(10):2495–505.

    Article  PubMed  CAS  Google Scholar 

  40. Nagata Y, Nakasa T, Mochizuki Y, Ishikawa M, Miyaki S, Shibuya H, et al. Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded MicroRNA-15a. Arthritis Rheum. 2009;60(9):2677–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Japan Rheumatism Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayatoshi Shibuya.

About this article

Cite this article

Shibuya, H., Nakasa, T., Adachi, N. et al. Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation. Mod Rheumatol 23, 674–685 (2013). https://doi.org/10.1007/s10165-012-0710-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10165-012-0710-1

Keywords

Navigation