Skip to main content
Log in

HTLV-I virological and histopathological analysis in two cases of anti-centromere-antibody-seropositive Sjögren’s syndrome

  • Original Article
  • Published:
Modern Rheumatology

Abstract

Introduction

The aim of this study was to show the clinical and pathological characteristics of anti-centromere-antibody (ACA)-seropositive Sjögren’s syndrome (SS) in two anti-human T-cell leukemia virus type I (HTLV-I)-seropositive patients.

Methods

One patient was an HTLV-I carrier whereas the other was diagnosed with HTLV-I-associated myelopathy (HAM). Background data including serum HTLV-I titers, viral loads, and cytokine profiles were recorded. Azocarmine with aniline blue (Azan)–Mallory staining and immunohistochemistry of the labial salivary glands (LSGs) and a muscle biopsy specimen from the HAM patient were performed.

Results

Serum transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), and HTLV-I viral load were high in the HAM-SS patient compared with the HTLV-I carrier. Fibrous change in LSG was prominent in the HAM-SS patient. Although TGF-β expression was similar in the two patients, expression of HTLV-I-related proteins including p12, p28, group-specific antigen (GAG), and nuclear factor kappa-B (NF-κB) in the LSG were dominantly detected in the HAM-SS patient. Frequency of TGF-β staining in HTLV-I-seropositive SS patients without ACA, HTLV-I-seronegative SS patients with ACA, and HTLV-I-seronegative SS patients without ACA was lower than that of the previous two patients.

Conclusion

A high HTLV-I viral load in situ is supposed to promote the production of cytokines, especially TGF-β, resulting in the fibrous change of LSG in ACA-seropositive SS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACA:

Anti-centromere antibody

ANA:

Anti-nuclear antibody

CSF:

Cerebrospinal fluid

HAM:

HTLV-I-associated myelopathy

HTLV-I:

Human T-cell leukemia virus type I

IFN-γ:

Interferon gamma

MNC:

Mononuclear cell

LSG:

Labial salivary gland

SS:

Sjögren’s syndrome

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

References

  1. Terada K, Katamine S, Eguchi K, Moriuchi R, Kita M, Shimada H, et al. Prevalence of serum and salivary antibodies to HTLV-1 in Sjögren’s syndrome. Lancet. 1994;344(8930):1116–9.

    Article  PubMed  CAS  Google Scholar 

  2. Nakamura H, Kawakami A, Eguchi K. Mechanisms of autoantibody production and the relationship between autoantibodies and the clinical manifestations in Sjögren’s syndrome. Transl Res. 2006;148:281–8.

    Article  PubMed  CAS  Google Scholar 

  3. Nakamura H, Eguchi K, Nakamura T, Mizokami A, Shirabe S, Kawakami A, et al. High prevalence of Sjögren’s syndrome in patients with HTLV-I associated myelopathy. Ann Rheum Dis. 1997;56:167–72.

    Article  PubMed  CAS  Google Scholar 

  4. Hida A, Imaizumi M, Sera N, Akahoshi M, Soda M, Maeda R, et al. Association of human T lymphotropic virus type I with Sjogren syndrome. Ann Rheum Dis. 2010;69:2056–7.

    Article  PubMed  Google Scholar 

  5. Nakamura H, Kawakami A, Tominaga M, Hida A, Yamasaki S, Migita K, et al. Relationship between Sjögren’s syndrome and human T-lymphotropic virus type I infection: follow-up study of 83 patients. J Lab Clin Med. 2000;135:139–44.

    Article  PubMed  CAS  Google Scholar 

  6. Nakamura H, Kawakami A, Hayashi T, Iwamoto N, Okada A, Tamai M, et al. Anti-centromere antibody-seropositive Sjögren’s syndrome differs from conventional subgroup in clinical and pathological study. BMC Musculoskelet Disord. 2010;11:140.

    Article  PubMed  Google Scholar 

  7. Katano K, Kawano M, Koni I, Sugai S, Muro Y. Clinical and laboratory features of anti-centromere antibody positive primary Sjögren’s syndrome. J Rheumatol. 2001;28:2238–44.

    PubMed  CAS  Google Scholar 

  8. Hida A, Kawabe Y, Kawakami A, Migita K, Tominaga M, Nakamura H, et al. HTLV-I associated Sjögren’s syndrome is aetiologically distinct from anti-centromere antibodies positive Sjögren’s syndrome. Ann Rheum Dis. 1999;58:320–2.

    Article  PubMed  CAS  Google Scholar 

  9. Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis. 2002;61:554–8.

    Article  PubMed  CAS  Google Scholar 

  10. Chisholm DM, Mason DK. Labial salivary gland biopsy in Sjögren’s disease. J Clin Pathol. 1968;21:656–60.

    Article  PubMed  CAS  Google Scholar 

  11. Beroukas D, Hiscock J, Jonsson R, Waterman SA, Gordon TP. Subcellular distribution of aquaporin 5 in salivary glands in primary Sjögren’s syndrome. Lancet. 2001;358:1875–6.

    Article  PubMed  CAS  Google Scholar 

  12. Tsuboi H, Matsumoto I, Wakamatsu E, Nakamura Y, Iizuka M, Hayashi T, et al. New epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren’s syndrome. Clin Exp Immunol. 2010;162:53–61.

    Article  PubMed  CAS  Google Scholar 

  13. Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol. 1998;4:586–93.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao T, Satou Y, Sugata K, Miyazato P, Green PL, Imamura T, et al. HTLV-1 bZIP factor enhances TGF-β signaling through p300 coactivator. Blood. 2011;118:1865–76.

    Article  PubMed  CAS  Google Scholar 

  15. Eguchi K, Matsuoka N, Ida H, Nakashima M, Sakai M, Sakito S, et al. Primary Sjögren’s syndrome with antibodies to HTLV-I: clinical and laboratory features. Ann Rheum Dis. 1992;51:769–76.

    Article  PubMed  CAS  Google Scholar 

  16. Santos SB, Porto AF, Muniz AL, Luna T, Nascimento MC, Guerreiro JB, et al. Modulation of T cell responses in HTLV-1 carriers and in patients with myelopathy associated with HTLV-1. Neuroimmunomodulation. 2006;13:145–51.

    Article  PubMed  CAS  Google Scholar 

  17. Hansen G, McIntire JJ, Yeung VP, Berry G, Thorbecke GJ, Chen L, et al. CD4(+) T helper cells engineered to produce latent TGF-beta1 reverse allergen-induced airway hyperreactivity and inflammation. J Clin Invest. 2000;105:61–70.

    Article  PubMed  CAS  Google Scholar 

  18. McCartney-Francis NL, Wahl SM. Dysregulation of IFN-gamma signaling pathways in the absence of TGF-beta 1. J Immunol. 2002;169:5941–7.

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Nakamura.

About this article

Cite this article

Nakamura, H., Horai, Y., Tokuyama, A. et al. HTLV-I virological and histopathological analysis in two cases of anti-centromere-antibody-seropositive Sjögren’s syndrome. Mod Rheumatol 23, 133–139 (2013). https://doi.org/10.1007/s10165-012-0641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10165-012-0641-x

Keywords

Navigation