Skip to main content
Log in

Decrease in CD4+CD25+ and CD8+CD28+ T cells in interstitial pneumonitis associated with rheumatic disease

  • Original Article
  • Published:
Modern Rheumatology

Abstract

The expression of CD25 or CD28 on T cells was examined in patients with rheumatic diseases associated with interstitial pneumonitis (IP), in order to investigate the conditions of CD4+CD25+ regulatory T cells and CD8+CD28 suppressor T cells. Fifty-five patients with various rheumatic diseases and 23 normal controls were enrolled. CD4+CD25+ T cells of patients with IP were significantly decreased in comparison with non-IP patients, and the ratio of CD8+CD28 T cells in patients with IP was significantly higher than that in non-IP patients or normal controls. These results for CD8+CD28 T cells were in accord with the decrease in CD8+CD28+ T cells, and may be related to activation-induced CD8+CD28+ T-cell death. Thus, the abnormality of CD4+CD25+ regulatory T cells may be related to the pathogenesis of IP, and the survival and activation of CD8+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kanai Y, Tokano Y, Tsuda H, Hashimoto H, Okumura K, Hirose S. HLA-DR positive T cells patients with polymyositis/dermatomyositis. J Rheumatol. 1993;20:77–9.

    PubMed  CAS  Google Scholar 

  2. Piguet PF, Collart MA, Grau GE, Kapanci Y, Vassalli P. Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J Exp Med. 1989;170:655–63.

    Article  PubMed  CAS  Google Scholar 

  3. Piguet PF, Collart MA, Grau GE, Sappino AP, Vassalli P. Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature. 1990;344:245–7.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang Y, TC Lee, Guillemin B, Yu MC, Rom WN. Enhanced IL-1 beta and tumor necrosis factor-alpha release and messenger RNA expression in macrophages from idiopathic pulmonary fibrosis or after asbestos exposure. J Immunol. 1993;150:4188–96.

    Google Scholar 

  5. Chen ES, Greenlee BM, Willis-Karp M, Moller DR. Attenuation of inflammation and fibrosis in interferon-gamma-deficient mice after intratracheal bleomycin. Am J Respir Cell Mol Biol. 2001;24:545–55.

    Google Scholar 

  6. Piguet PF, Vesin C, Grau GE, Thompson RC. Interleukin 1 receptor antagonist (IL-1 ra) prevents or cures pulmonary fibrosis elicited in mice by bleomycin or silica. Cytokine. 1993;5:57–61.

    Article  PubMed  CAS  Google Scholar 

  7. Crystal RG, Bitterman PB, Mossman B, Schwarz MI, Sheppard O, Almasy L, et al. Future research directions in idiopathic pulmonary fibrosis: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med. 2002;166:236–46.

    Article  PubMed  Google Scholar 

  8. Zhu Z, Homer RJ, Wang Z, Chen O, Geba GP, Wang J, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subpithelial fibrosis, physiolosic abnormalities, and eotaxin production. J Clin Invest. 1999;103:779–88.

    Article  PubMed  CAS  Google Scholar 

  9. Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med. 2001;194:809–21.

    Article  PubMed  CAS  Google Scholar 

  10. Smith RE, Strieter RM, Phan SH, Lukacs NW, Huffnagle GB, Wilke CA, et al. Production and function of murine macrophage inflammatory protein-1 alpha in bleomycin-induced lung injury. J Immunol. 1994;153:4704–12.

    PubMed  CAS  Google Scholar 

  11. Kaneko Y, Kuwano K, Kunitake R, Kawasaki M, Hagimoto N. B7-1, B7-2 and class II MHC molecules in idiopathic pulmonary fibrosis and bronchiolitis obliterans-organizing pneumonia. Eur Respir J. 2000;15:49–55.

    PubMed  CAS  Google Scholar 

  12. Lee S, Kaneko K, Sekigawa I, Tokano Y, Takasaki Y, Hashimoto H. Circulating interleukin-16 in systemic lupus erythematosus. Br J Rheumatol. 1998;37:1334–7.

    Article  PubMed  CAS  Google Scholar 

  13. Hirashima M, Fukazawa T, Abe K, Morita Y, Kusaoi M, Hashimoto H. Expression and activity analyses of CTLA-4 in peripheral blood lymphocytes in systemic lupus erythematosus patients. Lupus. 2004;13:24–31.

    Article  PubMed  CAS  Google Scholar 

  14. Lajaunias F, Ida A, Kikuchi S, Fossati-Jimack L, Martinez-Soria E, Moll T, et al. Differential control of CD22 ligand expression on B and T lymphocytes, and enhanced expression in murine systemic lupus. Arthritis Rheum. 2003;48(6):1612–21.

    Article  PubMed  CAS  Google Scholar 

  15. Suzuki J, Nakano S, Nakiri Y Mitsuo A, Morimoto S, Tokano Y, et al. CD19/22 balance relates to improvement of disease activity in systemic lupus erythematosus. Mod Rheumatol. 2006;16:235–8.

    Google Scholar 

  16. Nakiri Y, Suzuki J, Mitsuo A, Amano H, Morimoto S, Hashimoto H, et al. Expression of CD22 on peripheral B cells in Patients with rheumatoid arthritis: Relation to CD5 positive B cells. Clin Rheumatol. 2007;26:1721–3.

    Google Scholar 

  17. Filaci G, Bacilieri S, Fravega M, Monetti M, Contini P, Indiveri F. Impairment of CD8+ T suppressor cell function in patients with active systemic erythematosus. J Immunol. 2001;166:6452–7.

    PubMed  CAS  Google Scholar 

  18. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.

    PubMed  CAS  Google Scholar 

  19. Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996;184:387–96.

    Article  PubMed  CAS  Google Scholar 

  20. Subcommittee for Scleroderma Criteria of the American Committee. Preliminary criteria for the classification of systemic sclerosis. Arthritis Rheum. 1980;23:581–90.

    Google Scholar 

  21. Arnett FC, Edwothy SM, Bloch DA, McShane DJ, Fries FJ, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.

    Article  PubMed  CAS  Google Scholar 

  22. Kotajima L, Aotsuka S, Sumiya M, Yokohari R, Tojo T, Kasukawa R. Clinical features of patients with juvenile onset mixed connective tissue disease: analysis of date collected in a nationwide collaborative study in Japan. J Rheumatol. 1996;23:1088–94.

    PubMed  CAS  Google Scholar 

  23. Bohan A, Peter JB. Polymyositis and dermatomyositis. N Engl J Med 1975;292:344–7, 403–7.

    Google Scholar 

  24. Iezzi G, Sheidegger D, Lanzavecchia A. Migration and function of anti-primed nonpolarized T lymphocytes in vivo. J Exp Med. 2001;193:987–93.

    Article  PubMed  CAS  Google Scholar 

  25. Masopust D, Vezys V, Usherwood EJ, Cauley LS, Olson S, Marzo AL, et al. Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J Immunol. 2004;172:4875–82.

    PubMed  CAS  Google Scholar 

  26. Suzuki J, Morimoto S, Amano H, Tokano Y, Takasaki Y, Hashimoto H. Serum levels of interleukin 15 in patients with rheumatic diseases. J Rheumatol. 2001;28:2389–91.

    PubMed  CAS  Google Scholar 

  27. Fu S, Yopp AC, Mao X, Chen D, Zhanq N, Chen D, et al. CD4+CD25+CD62L+T-regulatory cell subset has optimal suppressive and proliferative potential. Am J Transplant. 2004;4:65–78.

    Article  PubMed  CAS  Google Scholar 

  28. Mottonen M, Heikkinen J, Mustonen L, Isomaki P, Luukkainen R, Lassila O. CD4+CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol. 2005;140:360–7.

    Article  PubMed  CAS  Google Scholar 

  29. Cao D, van Vollenhoven R, Klareskog L, Trollmo C, Malmstrom V. CD25brightCD4+regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther. 2004;6:R335–46.

    Article  PubMed  CAS  Google Scholar 

  30. Kaneko H, Saito K, Hashimoto H, Yagita H, Okumura K, Azuma M. Preferential elimination of CD28+ T cells in systemic lupus erythematosus (SLE) and the relation with activation-induced apoptosis. Clin Exp Immunol. 1996;106:218–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

All of the authors confirm that there is no conflict of interest with regard to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Morimoto.

About this article

Cite this article

Katagiri, A., Morimoto, S., Nakiri, Y. et al. Decrease in CD4+CD25+ and CD8+CD28+ T cells in interstitial pneumonitis associated with rheumatic disease. Mod Rheumatol 18, 562–569 (2008). https://doi.org/10.1007/s10165-008-0090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10165-008-0090-8

Keywords

Navigation