Skip to main content

Antibiotics affect migratory restlessness orientation

Abstract

The role of microbiome in shaping animal’s behavior is well established. Accordingly, the use of antibiotics may have profound effects on behavior, which are seldom examined. Recently, the symbiotic magnetic-sensing hypothesis has been forwarded as a mechanistic explanation for the phenomenon of animal magnetoreception. It suggests a symbiotic relationship between magnetotactic bacteria (MTB) and the navigating host. To establish a research protocol for future behavioral studies, we examined the effect of a widely used antibiotic substance on migratory restlessness orientation and on magnetotactic bacteria. Using migrating Eurasian reed warblers, we show that in contrast to the control group, antibiotic treatment caused a lack of clear directionality in an Emlen funnel experiment. Accordingly, the antibiotic treatment group showed a significant increase in directional variance. This effect of antibiotics on behaviors associated with animal magnetic sensing might be considered as preliminary experimental support of the symbiotic magnetic-sensing hypothesis. Further, we lay a preliminary experimental protocol that could be implemented in experiments aiming to prove or refute the symbiotic magnetic sensing hypothesis.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Able KP (1982) Field studies of avian nocturnal migratory orientation I. interaction of sun, wind and stars as directional cues. Anim Behav 30:761–767

    Google Scholar 

  • Åkesson S, Walinder G, Karlsson L, Ehnbom S (2001) Reed warbler orientation: Initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk. Anim Behav 61:181–189

    PubMed  Google Scholar 

  • Baedke J, Fábregas-Tejeda A, Delgado AN (2020) The holobiont concept before Margulis. J Exp Zool B Mol 334(3):149–155. https://doi.org/10.1002/jez.b.22931

    Article  Google Scholar 

  • Callens M, Watanabe H, Kato Y, Miura J, Decaestecker E (2018) Microbiota inoculum composition affects holobiont assembly and host growth in Daphnia. Microbiome 6(1):56

    PubMed  PubMed Central  Google Scholar 

  • Collins S, Berrick P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136(6):2003–2014

    PubMed  Google Scholar 

  • de Melo RD, Acosta-Avalos D (2017) Light effects on the multicellular magnetotactic prokaryote ‘Candidatus Magnetoglobus multicellularis’ are cancelled by radiofrequency fields: the involvement of radical pair mechanisms. Int J Gen Mol Microbiol 110:177–186

    Google Scholar 

  • Edelman NB, Fritz T, Nimpf S, Pichler P, Lauwers M, Hickman RW, Papadaki-Anastasopoulou A, Ushakova L, Heuser T, Resch GP, Saunders M (2015) No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. PNAS 112(1):262–267

    CAS  PubMed  Google Scholar 

  • Edwards KJ, Simmons SL, Sievert SM, Frankel RB, Bazylinski D (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 70:6230–6239

    PubMed  PubMed Central  Google Scholar 

  • Emlen ST, Emlen JT (1966) A technique for recording migratory orientation of captive birds. Auk 83(3):361–367

    Google Scholar 

  • Formella M, Przemyslaw B (2002) Directional preferences of the reed warbler (Acrocephalus scirpaceus) and the sedge warbler (A. schoenobaenus) on autumn migration at Lake Drużno (Poland). The Ring 24:15–29

    Google Scholar 

  • Franckel RB (1984) Magnetic guidance of organisms. Annu Rev Biophys Bioeng 13:85–103

    Google Scholar 

  • Gonzalez A, Stombaugh J, Lozupone C, Turnbaugh PJ, Gordon JI, Knight R (2011) The mind-body-microbial continuum. Dialogues. Clin Neurosci 13:55–62

    Google Scholar 

  • Hayward A, Robert P, Shinichi N (2021) A broadscale analysis of host-symbiont cophylogeny reveals the drivers of phylogenetic congruence. Ecol Lett 24(8):1681–1696

    PubMed  Google Scholar 

  • Hore PJ, Mouritsen H (2016) The radical pair mechanism of magnetoreception. Annu Rev Biophys 45:299–344

    CAS  PubMed  Google Scholar 

  • Inyinbor AA, Bello OS, Fadiji AE, Inyinbor HE (2018) Threats from antibiotics: a serious environmental concern. J Environ Chem Eng 6:784–793

    CAS  Google Scholar 

  • Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ, Ribeiro EA, Scott J, Russo SJ, Nestler EJ (2016) Alterations of the host microbiome affect behavioral responses to cocaine. Sci Rep 6(1):1–12

    Google Scholar 

  • Kishkinev D, Chernetsov N, Pakhomov A, Heyers D, Mouritsen H (2015) Eurasian reed warblers compensate for virtual magnetic displacement. Curr Biol 25:R822–R824

    CAS  PubMed  Google Scholar 

  • Kolodny O, Callahan BJ, Douglas AE (2020) The role of the microbiome in host evolution Phil. Trans R Soc B 375:2019058820190588

    Google Scholar 

  • Landler L, Ruxton GD, Malkemper EP (2021) Advice on comparing two independent samples of circular data in biology. Sci Rep 11(1):1–10

    Google Scholar 

  • Lefèvre CT, Bazylinski DA (2013) Ecology, diversity, and evolution of magnetotactic bacteria. MMBR 77(3):497–526

    PubMed  PubMed Central  Google Scholar 

  • Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8(1):51

    PubMed  PubMed Central  Google Scholar 

  • Logan AC, Katzman M (2005) Major depressive disorder: probiotics may be an adjuvant therapy. Med Hypotheses 64:533–538

    PubMed  Google Scholar 

  • Margulis L (1990) Words as battle cries: symbiogenesis and the new field of endocytobiology. Bioscience 40(9):673–677

    CAS  PubMed  Google Scholar 

  • Margulis L, René F (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. Mit Press, Cambridge

    Google Scholar 

  • Marr P G (2014) Directional (circular) statistics. http://webspace.ship.edu/pgmarr/Geo441/Lectures/Lec%2016%20%20Directional%20Statistics.pdf. Accessed Jan 2019

  • Meyer-Abich A (1943) I. Das Typologische Grundgesetz und Seine Folgerungen Für Phylogenie und Entwicklungsphysiologie. Acta Biotheoretica 7.1: 1–80

  • Mitchell MA (1988) Enrofloxacin. Drugs Future 13:305–307

    Google Scholar 

  • Monteil CL, Vallenet D, Menguy N, Benzerara K, Barbe V, Fouteau S, Cruaud C, Floriani M, Viollier E, Adryanczyk G, Leonhardt NE (2019) Bacteria at the origin of magnetoreception in a marine protist. Nat Microbiol 4(7):1088–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mouritsen H (2012) Search for the compass needles. Nature 484(7394):320–321

    CAS  PubMed  Google Scholar 

  • Muheim R, Åkesson S, Bäckman J, Sjöberg S (2017) Magnetic compass orientation research with migratory songbirds at Stensoffa Ecological Field Station in southern Sweden: why is it so difficult to obtain seasonally appropriate orientation? J Avian Biol 48:6–18

    Google Scholar 

  • Natan E, Vortman Y (2017) The symbiotic magnetic-sensing hypothesis: do magnetotactic bacteria underlie the magnetic sensing capability of animals. Mov Ecol 5:22–27

    PubMed  PubMed Central  Google Scholar 

  • Natan E, Fitak RR, Werber Y, Vortman Y (2020) Symbiotic magnetic sensing: raising evidence and beyond. Phil Trans B 375(1808):20190595

    CAS  Google Scholar 

  • Nordmann GC, Hochstoeger T, Keays DA (2017) Unsolved mysteries: magnetoreception—a sense without a receptor. PLoS Biol 15:1–10

    Google Scholar 

  • Pearson DJ, Small BJ, Kennerley PR (2002) Eurasian Reed Warbler: the characters and variation associated with the Asian form fuscus. Br Birds 95:42–61

    Google Scholar 

  • Pita L, Laura R, Beate MS, Andrea F, Ute H (2018) The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6(1):1–18

    Google Scholar 

  • Qian X, Zhao Y, Santini CL, Pan H, Xiao T, Chen H, Song T, Li J, Alberto F, Brustlein S, Wu LF (2021) How light affect the magnetotactic behavior and reproduction of ellipsoidal multicellular magnetoglobules? J Oceanol Limnol 39(6):2005–2014

    Google Scholar 

  • R Core Team (2021) R: A language and environment for statisticl computing. R foundation for statitical computing. Vienna, Austria. URL https://www.R-project.org/. Accessed Dec 2021

  • Ravanbakhsh M, Rashmi S, Laurentius AV, George AK, Alexandre JO (2018) Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome 6(1):1–10

    Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    CAS  PubMed  Google Scholar 

  • Sapp J (2002) Paul Buchner (1886–1978) and hereditary symbiosis in insects. Int Microbiol 5(3):145–150

    PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon JC, Marchesi JR, Mougel C, Selosse MA (2019) Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7(1):1–5

    Google Scholar 

  • Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484(7394):367–370

    CAS  PubMed  Google Scholar 

  • Vannier N, Mony C, Bittebiere AK, Michon-Coudouel S, Biget M, Vandenkoornhuyse P (2018) A microorganisms’ journey between plant generations. Microbiome 6(1):79

    PubMed  PubMed Central  Google Scholar 

  • Walker MM, Kirschvink JL, Chang SBR, Dizon AE (1984) A candidate magnetic sense organ in the yellowfin tuna. Thunnus Albacares Science 224(4650):751–753

    CAS  PubMed  Google Scholar 

  • Weber T, Houston AI, Ens BJ, Weber TP, Houston AI, Ens B (2018) Optimal departure fat loads and stopover site use in avian migration: an analytical model. Proc Royal Soc B 258(1351):29–34

    Google Scholar 

  • Wiltschko W, Wiltschko R (1990) Magnetic orientation and celestial cues in migratory orientation. Experientia 46:342–352

    Google Scholar 

  • Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461(7268):1274–1277

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Shay Agmon of the Hula ringing station and the Hula Research Center staff for their assistance throughout the project. We further wish to thank the KKL-JNF for supporting the Hula Research Center. This research was supported by the Israel Science Foundation (grant No. 1350/21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Werber.

Ethics declarations

Conflict of interest

This study was funded by KKL-JNF, Israel. All authors declare no conflict of interest. All the protocols mentioned above, including capture, handling, and antibiotic treatment were performed under necessary permits from Israel’s nature and park authority. Permit number for 2018: 41885, and for 2017: 41589.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Werber, Y., Natan, E., Lavner, Y. et al. Antibiotics affect migratory restlessness orientation. J Ethol 40, 175–180 (2022). https://doi.org/10.1007/s10164-022-00747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10164-022-00747-0

Keywords

  • Magnetic sensing
  • Magnetotactic bacteria
  • Orientation
  • Symbiosis
  • Symbiotic magnetic sensing hypothesis
  • Bird migration