Farkas TE (2016) Body size, not maladaptive gene flow, explains death-feigning behaviour in Timema cristinae stick insects. Evol Ecol 30:623–634. https://doi.org/10.1007/s10682-016-9832-9
Article
Google Scholar
Giannico AT, Lima L, Lange RR, Froes TR, Montianiferreira F (2014) Proven cardiac changes during death-feigning (tonic immobility) in rabbits (Oryctolagus cuniculus). J Comp Physiol A 200:305. https://doi.org/10.1007/s00359-014-0884-4
Article
Google Scholar
Guo WJ, Yang KL, Zhang GY, Wen JB (2019) Supplementary nutrition of Eucryptorrhynchus brandti (coleoptera: curculionidae: cryptorrhychinae): effect of Ailanthus altissima host tissues on ovary maturation and oviposition. Environ Entomol. https://doi.org/10.1093/ee/nvz073
Article
PubMed
Google Scholar
Herrick NJ, Salom SM, Kok LT, McAvoy TJ (1938) Life history, development, and rearing of Eucryptorrhynchus brandti (Coleoptera: Curculionidae) in quarantine. Ann Entomol Soc Am 104:718–725
Article
Google Scholar
Herrick NJ, McAvoy TJ, Snyder AL, Salom SM, Kok LT (2012) Host-range testing of Eucryptorrhynchus brandti (Coleoptera: Curculionidae), a candidate for biological control of tree-of-heaven, Ailanthus altissima. Environ Entomol 41:118–124. https://doi.org/10.1603/EN11153
CAS
Article
PubMed
Google Scholar
Ji YC, Gao P, Zhang GY, Wen C, Wen JB (2017) Micro-habitat niche differentiation contributing to coexistence of Eucryptorrhynchus scrobiculatus Motschulsky and Eucryptorrhynchus brandti (Harold). Biocontrol Sci Tech 3:1–15. https://doi.org/10.1080/09583157.2017.1390069
CAS
Article
Google Scholar
Konishi K, Matsumura K, Sakuno W, Miyatake T (2020) Death feigning as an adaptive anti-predator behaviour: further evidence for its evolution from artificial selection and natural populations. J Evol Biol 9:1120–1128. https://doi.org/10.1111/jeb.13641
Article
Google Scholar
Kuriwada T, Kumano N, Shiromoto K, Haraguchi D (2011) Age-dependent investment in death-feigning behaviour in the sweetpotato weevil Cylas formicarius. Physiol Entomol 36:49–154. https://doi.org/10.1111/j.1365-3032.2010.00777.x
Article
Google Scholar
Li HJ, Wen JB (2021) Behaviour and metabolism during tonic immobility (death-feigning) in Eucryptorrhynchus scrobiculatus and E. brandti (Coleoptera: Curculionidae). Eur J Entomol 118:322–329
https://doi.org/10.14411/eje.2021.033
Article
Google Scholar
Li HJ, Zhang GY, Ji YC, Wen JB (2019) Effects of starvation on death-feigning in adult Eucryptorrhynchus brandti (Coleoptera: Curculionidae). Ethology 125:645–651. https://doi.org/10.1111/eth.12917
Article
Google Scholar
Lin HY, Qian K, Bai JX, Zhang DG, Lu R, Wan XL (2017) Study on circadian rhythms of olfactory response and its regulatory mechanisms in Spodoptera litura. J Wenzhou Med Univ 47:553–560
Google Scholar
Matsumura K, Sasaki K, Miyatake T (2016) Correlated responses in death-feigning behavior, activity, and brain biogenic amine expression in red flour beetle Tribolium castaneumstrains selected for walking distance. J Ethol 34:97–105. https://doi.org/10.1007/s10164-019-00596-4
Article
PubMed
Google Scholar
Metspalu L, Kuusik A, Hiiesaar K (2002) Tonic immobility in adult Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) evoked by mechanical and optical stimuli. Eur J Entomol 99:215–219. https://doi.org/10.14411/eje.2002.030
Article
Google Scholar
Miriyala A, Dutta GA, Joseph J (2013) Muscle group dependent responses to stimuli in a grasshopper model for tonic immobility. Biol Open 2:1214–1222. https://doi.org/10.1242/bio.20135520
Article
PubMed
PubMed Central
Google Scholar
Miyatake T (2001) Diurnal periodicity of death-feigning in Cylas formicarius (Coleoptera: Brentidae). J Insect Behav 14:421–432. https://doi.org/10.1023/A:1011196420147
Article
Google Scholar
Miyatake T, Tabuchi K, Sasaki K, Okada K, Katayama K, Moriya S (2008) Pleiotropic antipredator strategies, fleeing and feigning death, correlated with dopamine levels in Tribolium castaneum. Anim Behav 75:113–121
Article
Google Scholar
Miyatake T, Matsumura K, Kitayama R, Otsuki K, Yuhao J, Fujisawa R, Nagaya N (2019) Arousal from tonic immobility by vibration stimulus. Behav Genet. https://doi.org/10.1007/s10519-019-09962-x
Article
PubMed
Google Scholar
Nakayama S, Miyatake T (2010) A behavioral syndrome in the adzuki bean beetle: genetic correlation among death feigning, activity, and mating behavior. Ethology 116:108–112. https://doi.org/10.1007/s10682-008-9266-0
Article
Google Scholar
Nakayama S, Nishi Y, Miyatake T (2010) Genetic correlation between behavioural traits in relation to death-feigning behaviour. Popul Ecol 52:329–335. https://doi.org/10.1007/s10144-009-0188-7
Article
Google Scholar
Neves FM, Pie MR (2017) On the adult behavioral repertoire of the sawfly Perreyia flavipes Konow, 1899 (Hymenoptera: Pergidae): movement, mating, and thanatosis. Neotrop Entomol 479:1–7. https://doi.org/10.1007/s13744-017-0509-z
Article
Google Scholar
Nishino H, Sakai M (1996) Behaviorally significant immobile state of so-called thanatosis in the cricket Gryllus bimaculatus DeGeer: its characterization, sensory mechanism and function. J Comp Physiol A 179:613–624. https://doi.org/10.1007/BF00216126
Article
Google Scholar
Nunes JVE, Elisei T, Sousa BM (2012) Anti-predator behaviour in the Brazilian lizard Tropidurus itambere (Tropiduridae) on a rocky outcrop. Herpetol Bull 120:22–28
Google Scholar
Richardson EJ, Shumaker MJ, Harvey ER (1977) The effects of stimulus presentation during cataleptic, restrained, and free swimming states on avoidance conditioning of goldfish (Carassius Auratus). Psychol Rec 27:63–75. https://doi.org/10.1007/BF03394433
Article
Google Scholar
Ritter C, Mol FD, Richter E, Struck C, Katroschan KU (2016) Antipredator behavioral traits of some Agriotes wireworms (Coleoptera: Elateridae) and their potential implications for species identification. J Insect Behav 29:1–19. https://doi.org/10.1007/s10905-016-9555-3
Article
Google Scholar
Rovee CK, Kaufman LW, Collier GH, Kent GC (1976) Periodicity of death feigning by domestic fowl in response to simulated predation. Physiol Behav 17:891–895. https://doi.org/10.1016/0031-9384(76)90004-4
CAS
Article
PubMed
Google Scholar
Rovee CK, Chiapparelli WJ, Kaufman LW (1977) Influence of altered lighting regimes on the periodicity of death feigning. Physiol Behav 18:179–182. https://doi.org/10.1016/0031-9384(77)90117-2
CAS
Article
PubMed
Google Scholar
Ruxton G, William A, Thomas NS, Michael S (2018) Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford University Press, USA
Book
Google Scholar
Saunders DS, Steel CGH, Vafopoulou X, Lewis RD (2002) Insect clocks, 3rd edn. Elsevier Science. https://doi.org/10.1016/B978-0-444-50407-4.X5000-9
Book
Google Scholar
Sibul I, Kuusik A, Voolma K (2013) Patterns in abdominal pumping, miniature inspirations and heartbeats simultaneously recorded during cyclical gas exchange in adult Hylobius abietis (Coleoptera: Curculionidae) using a respirometer and IR actographs. Eur J Entomol 101:219–225. https://doi.org/10.14411/eje.2004.028
Article
Google Scholar
Tomioka K, Matsumoto A (2009) A comparative view of insect circadian clock systems. Cell Mol Life Sci 67:1397–1406. https://doi.org/10.1007/s00018-009-0232-y
CAS
Article
PubMed
Google Scholar
Uchiyama H, Sasaki K, Hinosawa S, Tanaka K, Matsumura K, Yajima S, Miyatake T (2019) Transcriptomic comparison between beetle strains selected for short and long durations of death feigning. Sci Rep 9:14001. https://doi.org/10.1038/s41598-019-50440-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang KL, Wen XJ, Ren Y, Wen JB (2019a) Novel trunk trap net designs for the control of Eucryptorrhynchus scrobiculatus (Coleoptera: Curculionidae). Pest Manag Sci 75:2618–2626. https://doi.org/10.1002/ps.5356
CAS
Article
PubMed
Google Scholar
Yang KL, Wen XJ, Ren Y, Wen JB (2019b) A novel adhesive trunk trap net for trapping Eucryptorrhynchus brandti (Coleoptera: Curculionidae). Pest Manag Sci 75:3218–3225. https://doi.org/10.1002/ps.5441
CAS
Article
PubMed
Google Scholar
Zhang GY, Ji YC, Wen XJ, Li Q, Ren Y, Wen JB (2017) Oviposition behaviour of Eucryptorrhynchus brandti (Coleoptera: Curculionidae: Cryptorrhychinae) on Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae). Biocontrol Sci Tech 1:1–15. https://doi.org/10.1080/09583157.2017.1387233
Article
Google Scholar
Zhao Y, Chen Y (1980) Economic insect fauna of China. Fasc. 20. Coleoptera: Curculionidae (I). China Science Press, Beijing, p 21
Google Scholar
Zhou XJ, Yuan CY, Yang XK, Guo AK (2005) Research progress on the molecular mechanism of Drosophila circadian rhythm. Progr Biochem Biophys 32:3–8
Google Scholar