Crabby commotions: visual not vibrational-orientated searching behaviours guide aggregation formation around key resources

Abstract

Incidental stimuli produced by animal aggregations may be utilised by conspecifics to locate key resources in areas, where resources are patchily distributed and temporally irregular. However, few studies have investigated the roles of vibrational stimuli in aggregation formation when compared to other stimuli such as visual and tactile. Experimental manipulations were undertaken with Coenobita compressus, a terrestrial hermit crab of the tropics, which is constantly forming and re-forming aggregations around highly contested shell resources in a beach landscape. The commotions of jostling crabs, which may be up to hundreds of crabs at a time, produce a number of different incidental sensory stimuli during formation. Aspects of these stimuli were simulated, visual and vibrational, using playbacks and models. The visual simulation attracted significantly more crabs than the vibrational treatment, with the crabs also staying for a significantly longer period of time. The vibration simulation also did not attract more crabs when compared to a control, but visitors spent significantly less time in vibration-exposed quadrats, indicating reception of the stimulus. Taken together these findings indicate that visual public information promoted social aggregation formation, whereas vibrational information alone was inadequate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Aicher B, Tautz J (1984) ‘Peripheral inhibition’ of vibration-sensitive units in the leg of the fiddler crab Uca pugilator. J Comp Physiol A 154:49–52

    Article  Google Scholar 

  2. Ball EE (1972) Observations on the biology of the hermit crab Coenobita compressus H. Milne Edwards (Decapoda; Anomura) on the west coast of the Americas. Rev Biol Trop 20:265–273

    Google Scholar 

  3. Bates KM, Laidre ME (2018) When to socialize: perception of time-sensitive social structures among social hermit crabs. Anim Behav 138:19–27

    Article  Google Scholar 

  4. Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  5. Breithaupt T, Thiel M (2011) Chemical communication in crustaceans, 1st edn. Springer, New York

    Book  Google Scholar 

  6. Caves EM, Brandley NC, Johnsen S (2018) Visual acuity and the evolution of signals. Trends Ecol Evol 33:358–372

    PubMed  Article  Google Scholar 

  7. Chan A-H, Giraldo-Perez P, Smith S, Blumstein D (2010) Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol Lett 6:458–461

    PubMed  PubMed Central  Article  Google Scholar 

  8. Chase ID, Weissburg M, Dewitt TH (1988) The vacancy chain process: a new mechanism of resource distribution in animals with application to hermit crabs. Anim Behav 36:1265–1274

    Article  Google Scholar 

  9. Cocroft RB (2001) Vibrational communication and the ecology of herbivorous insects. Am Zool 41:1215–1221

    Google Scholar 

  10. Cocroft RB, Hamel J, Su Q, Gibson J (2014) Vibrational playback experiments: challenges and solutions. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, Heidelberg, pp 249–274

    Google Scholar 

  11. Couzin I, Laidre ME (2009) Fission-fusion populations. Curr Biol 19:R633–R635

    CAS  PubMed  Article  Google Scholar 

  12. Cronin TW, Johnsen S, Marshall NJ, Warrent EJ (2014) Visual ecology, 1st edn. Princeton Unviersity Press, Princeton

    Book  Google Scholar 

  13. Danchin É, Giraldeau L-A, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491

    CAS  PubMed  Article  Google Scholar 

  14. Elias DO, Mason AC (2014) The role of wave and substrate heterogeneity in vibratory communication: practical issues in studying the effect of vibratory environments in communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, Heidelberg, pp 215–247

    Google Scholar 

  15. Fertin A, Casas J (2007) Orientation towards prey in antlions: efficient use of wave propagation in sand. J Exp Biol 210:3337–3343

    PubMed  Article  Google Scholar 

  16. Field LH, Evans A, MacMillan DL (1987) Sound production and stridulatory structures in hermit crabs of the genus Trizopagurus. J Mar Biol 67:89–110

    Article  Google Scholar 

  17. Fletcher LE, Yack JE, Fitzgerald TD, Hoy RR (2006) Vibrational communication in the cherry leaf roller caterpillar Caloptilia serotinella (Gracillarioidea: Gracillariidae). J Insect Behav 19:1–18

    Article  Google Scholar 

  18. Floyd RB, Woodland DJ (1981) Localization of soil dwelling scarab larvae by the black-backed magpie, Gymnorhina tibicen (Latham). Anim Behav 29:510–517

    Article  Google Scholar 

  19. Harzsch S, Hansson BS (2008) Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci 9:1–35

    Article  CAS  Google Scholar 

  20. Hazlett B (1966) Observations on the social behavior of the land hermit crab, Coenobita clypeatus (Herbst). Ecology 47:316–317

    Article  Google Scholar 

  21. Hill PSM (2008) Vibrational communication in animals. Harvard University Press

    Google Scholar 

  22. Hill PSM, Wessel A (2016) Biotremology. Curr Biol 26:R187–R191

    CAS  PubMed  Article  Google Scholar 

  23. Horch K (1971) An organ for hearing and vibration sense in the ghost crab Ocypode. J Comp Physiol A 73:1–21

    Google Scholar 

  24. Horch K (1975) The acoustic behavior of the ghost crab Ocypode cordimana Latreille, 1818 (Decapoda, Brachyura). Crustaceana 29:193–205

    Article  Google Scholar 

  25. Horch K, Salmon M (1972) Responses of the ghost crab, Ocypode, to acoustic stimuli. Z Tierpsychol 30:1–13

    CAS  PubMed  Article  Google Scholar 

  26. Imafuku M, Ikeda H (1990) Sound production in the land hermit crab Coenobita purpureus Stimpson, 1858 (Decapoda, Coenobitidae). Crustaceana 58:168–174

    Article  Google Scholar 

  27. Kurta A (1982) Social faciliation of foraging behavior by the hermit crab Coenobita compressus, in Costa Rica. Biotropica 142:132–136

    Article  Google Scholar 

  28. Laidre ME (2010) How rugged individualists enable one another to find food and shelter: field experiments with tropical hermit crabs. Proc R Soc B Biol Sci 277:1361–1369

    Article  Google Scholar 

  29. Laidre ME (2012) Homes for hermits: temporal, spatial and structural dynamics as transportable homes are incorporated into a population. J Zool 288:33–40

    Article  Google Scholar 

  30. Laidre ME (2013a) Foraging across ecosystems: Diet diversity and social foraging spanning aquatic and terrestrial ecosystems by an invertebrate. Mar Ecol 34:80–89

    Article  Google Scholar 

  31. Laidre ME (2013b) Eavesdropping foragers use level of collective commotion as public information to target high quality patches. Oikos 122:1505–1511

    Google Scholar 

  32. Laidre ME, Patten E, Pruitt L (2012) Costs of a more spacious home after remodelling by hermit crabs. J R Soc Interface 9:3574–3577

    PubMed  PubMed Central  Article  Google Scholar 

  33. Lewis ER, Narins PM, Jarvis JUM, Bronner G, Mason MJ (2006) Preliminary evidence for the use of microseismic cues for navigation by the Namib golden mole. J Acoust Soc Am 119:1260–1268

    PubMed  Article  Google Scholar 

  34. Ligges U, Sebastian K, Mersmann O, Schnackenberg S (2018) tuneR: Analysis of music and speech. see https://CRAN.R-project.org/package=tuneR

  35. Martin K, Quine D, Marler P (1977) Sound transmission and its significance for animal vocalization: II tropical forest habitats. Behav Ecol Sociobiol 2:291–302

    Article  Google Scholar 

  36. McGregor PK (1992) Playback and studies of animal communication, 1st edn. Springer, New York

    Book  Google Scholar 

  37. McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Article  Google Scholar 

  38. Morton ES (1975) The American society of naturalists ecological sources of selection on avian sounds. Am Nat 109:17–34

    Article  Google Scholar 

  39. Osorno JL, Fernández-Casillas L, Rodríguez-Juárez C (1998) Are hermit crabs looking for light and large shells?: Evidence from natural and field induced shell exchanges. J Exp Mar Biol Ecol 222:163–173

    Article  Google Scholar 

  40. Partan SR (2017) Multimodal shifts in noise: switching channels to communicate through rapid environmental change. Anim Behav 124:325–337

    Article  Google Scholar 

  41. Partan S, Marler P (1999) Communication goes multimodal. Science 283:1272–1273

    CAS  PubMed  Article  Google Scholar 

  42. Ping X, Lee JS, Garlick D, Jiang Z, Blaisdell AP (2015) Behavioral evidence illuminating the visual abilities of the terrestrial Caribbean hermit crab Coenobita clypeatus. Behav Processes 118:47–58

    PubMed  Article  Google Scholar 

  43. Polajnar J, Eriksson A, Rossi Stacconi MV, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2014) The process of pair formation mediated by substrate-borne vibrations in a small insect. Behav Processes 107:68–78

    PubMed  Article  Google Scholar 

  44. Rado R, Terkel J, Wollberg Z (1998) Seismic communication signals in the blind mole-rat (Spalax ehrenbergi): nelectrophysiological and behavioral evidence for their processing by the auditory system. J Comp Physiol A 183:503–511

    CAS  PubMed  Article  Google Scholar 

  45. Reese ES (1963) The behavioral mechanisms underlying shell selection by hermit crabs. Behaviour 21:78–124

    Article  Google Scholar 

  46. Rittschof D (1980) Chemical attraction of hermit crabs and other attendants to simulated gastropod predation sites. J Chem Ecol 6:103–118

    Article  Google Scholar 

  47. Roberts L (2021) Substrate-borne vibration and sound production by the land hermit crab Coenobita compressus during social interactions. J Acoust Soc Am 149(5):3261–3272

    Article  Google Scholar 

  48. Roberts L, Laidre ME (2019) Get off my back: vibrational assessment of homeowner strength. Biol Lett 15:20180819

    PubMed  PubMed Central  Article  Google Scholar 

  49. Roberts L, Cheesman S, Elliott M, Breithaupt T (2016) Sensitivity of Pagurus bernhardus (L.) to substrate-borne vibration and anthropogenic noise. J Exp Mar Bio Ecol 474:185–194

    Article  Google Scholar 

  50. RStudio (2015) RStudio: integrated development for R. RStudio

    Google Scholar 

  51. Saavedra I, Amo L (2018) Insectivorous birds eavesdrop on the pheromones of their prey. PLoS ONE 13:1–12

    Article  CAS  Google Scholar 

  52. Salmon M (1971) Signal characteristics and acoustic detection by the fiddler crabs, Uca rapax and Uca pugilator. Physiol Zool 44:210–224

    Article  Google Scholar 

  53. Salmon M, Atsaides SP (1969) Sensitivity to substrate vibration in the fiddler crab, Uca pugilator. Anim Behav 17(Part 1):68–76

    Article  Google Scholar 

  54. Salmon M, Horch K (1973) Vibration reception in the fiddler crab, Uca minax. Comp Biochem Physiol A Physiol 44:527–541

    Article  Google Scholar 

  55. Shimasaki L, Kitagawa K, Hernandez M, Blumstein DT (2012) Are blue land crabs (Cardisoma guanhumi) attracted to falling fruit? Acta Ethol 15:159–164

    Article  Google Scholar 

  56. Small MP, Thacker RW (1994) Land hermit crabs use odors of dead conspecifics to locate shells. J Exp Mar Biol Ecol 182:169–182

    Article  Google Scholar 

  57. Stahlman WD, Chan AAY-H, Blumstein DT, Fast CD, Blaisdell AP (2011) Auditory stimulation dishabituates anti-predator escape behavior in hermit crabs (Coenobita clypeatus). Behav Processes 88:7–11

    PubMed  Article  Google Scholar 

  58. Steele EP, Laidre ME (2019) Leaf me alone: visual constraints on the ecology of social group formation. Behav Ecol Sociobiol 73:53

    Article  Google Scholar 

  59. Sueur J, Aubin T, Simonis C (2008) Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics 18:213–226

    Article  Google Scholar 

  60. Valone TJ, Templeton JJ (2002) Public information for the assessment of quality: a widespread social phenomenon. Philos Trans R Soc B Biol Sci 357:1549–1557

    Article  Google Scholar 

  61. Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A, Symondson WOC, Čokl A (2014) Vibrational communication networks: eavesdropping and biotic noise. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, Heidelberg, pp 93–123

    Google Scholar 

  62. Virant-Doberlet M, Kuhelj A, Polajnar J, Šturm R (2019) Predator-prey interactions and eavesdropping in vibrational communication networks. Front Ecol Evol 7:1–15

    Article  Google Scholar 

  63. Ward A, Webster M (2016) Sociality: the behaviour of group-living animals, 1st edn. Springer International Publishing

    Book  Google Scholar 

  64. Yack JE, Smith ML, Weatherhead PJ (2001) Caterpillar talk: acoustically mediated territoriality in larval Lepidoptera. Proc Natl Acad Sci 98:11371–11375

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Yadav C, Guedes RNC, Matheson SM, Timbers TA, Yack JE (2017) Invitation by vibration: recruitment to feeding shelters in social caterpillars. Behav Ecol Sociobiol 71:51

    Article  Google Scholar 

  66. Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1–25

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

Thank you to staff at Osa Conservation Field Station (Costa Rica), and to C. Doherty, E. Steele, L. Valdes and J. Krieger for company in the field. A special thanks to the Dartmouth Women in Science Programme (WISP) undergraduate students A. Morris and P. Bazylczyk for their video coding. Thanks to G. Clucas and to the Shoals Marine Laboratory 2018 interns for island fun. The reviewers are thanked for providing valuable feedback. This work was supported by Dartmouth College (Hanover, NH), and a Shoals Marine Laboratory (UNH and Cornell University, NH, NY) Scientist-in-Residence Fellowship awarded to the author.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Louise Roberts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file2 (MP4 28427 KB)

Supplementary file3 (MP4 23827 KB)

Supplementary file1 (DOCX 4730 KB)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, L. Crabby commotions: visual not vibrational-orientated searching behaviours guide aggregation formation around key resources. J Ethol (2021). https://doi.org/10.1007/s10164-021-00710-5

Download citation

Keywords

  • Substrate-borne vibration
  • Aggregation
  • Public information
  • Coenobita compressus
  • Hermit crab
  • Visual information