Advertisement

Journal of Ethology

, Volume 37, Issue 1, pp 67–73 | Cite as

Fighting behaviour in native fish: the Mexican mojarra (Cichlasoma istlanum) wins when confronted with the non-native convict cichlid fish (Amatitlania nigrofasciata)

  • M. Archundia
  • E. ArceEmail author
Article

Abstract

The convict cichlid fish Amatitlania nigrofasciata, an aggressive fish species, was introduced in 1987 into the Balsas River basin in central Mexico, which is home to the native cichlid Mexican mojarra, Cichlasoma istlanum. Local populations of the Mexican mojarra have been hypothesized to be negatively affected by the introduction of the non-native convict cichlid fish, and the two species have been observed engaging in aggressive behaviours over resources such as food and shelter along this basin. Thus, we evaluated agonistic interactions between the native Mexican mojarra and the non-native convict cichlid fish. In experimental contests between the species, chases, bites, refuge use and defence, and food consumed were recorded and analysed. Contrary to expectation, the Mexican mojarra engaged in a greater number of chases and bites than the convict cichlid fish and was more successful in obtaining the resource under dispute (a refuge and food).

Keywords

Contest Agonistic behaviour Aggression Interspecific competition Interaction Displacement 

Notes

Acknowledgments

We thank J. Luna-Figueroa, H. Mejía-Mojica, and J. García for helpful comments on the study. Thanks to J. Figueroa, D. Molina, and A. Mares for their technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable guidelines of the Ley General del Equilibrio Ecológico y la Protección al Ambiente were followed. Fish in this experiment did not suffer any injury, and the study did not use endangered or protected species.

References

  1. Abbott JC, Dill LM (1989) The relative growth of dominant and subordinate juvenile steelhead trout (Salmo gairdneri) fed equal rations. Behaviour 108:104–113CrossRefGoogle Scholar
  2. Alcaraz G, Jofre GI (2017) Aggressiveness compensates for low muscle strength and metabolic disadvantages in shell fighting: an outcome of the individual’s past. Behav Ecol Sociobiol 71:71–87.  https://doi.org/10.1007/s00265-017-2311-7 CrossRefGoogle Scholar
  3. Arnold C, Taborsky B (2010) Social experience in early ontogeny has lasting effects on social skills in cooperatively breeding cichlids. Anim Behav 79:621–630.  https://doi.org/10.1016/j.anbehav.2009.12.008 CrossRefGoogle Scholar
  4. Arnott G, Elwood RW (2009a) Assessment of fighting ability in animal contests. Anim Behav 77:991–1004.  https://doi.org/10.1016/j.anbehav.2009.02.010 CrossRefGoogle Scholar
  5. Arnott G, Elwood RW (2009b) Gender differences in aggressive behaviour in convict cichlids. Anim Behav 78:1221–1227.  https://doi.org/10.1016/j.anbehav.2009.08.005 CrossRefGoogle Scholar
  6. Beeching SC (1992) Visual assessment of relative body size in a cichlid fish, the oscar, Astronotus ocellatus. Ethology 90:177–186.  https://doi.org/10.1111/j.1439-0310.1992.tb00831.x CrossRefGoogle Scholar
  7. Bell AM, Stamps JA (2004) Development of behavioural differences between individuals and populations of sticklebacks, Gasterosteus aculeatus. Anim Behav 68:1339–1348.  https://doi.org/10.1016/j.anbehav.2004.05.007 CrossRefGoogle Scholar
  8. Bergstrom MA, Mensinger AF (2009) Interspecific resource competition between the invasive round goby and three native species: logperch, slimy sculpin, and spoonhead sculpin. Trans Am Fish Soc 138:1009–1017.  https://doi.org/10.1577/T08-095.1 CrossRefGoogle Scholar
  9. Berman CH, Quinn TP (1991) Behavioural thermoregulation and homing by spring chinook salmon, Oncorhynchus tshawytscha (Walbaum), in the Yakima River. J Fish Biol 39:301–312.  https://doi.org/10.1111/j.1095-8649.1991.tb04364.x CrossRefGoogle Scholar
  10. Bertness MD (1981) Interference, exploitation, and sexual components of competition in a tropical hermit crab assemblage. J Exp Mar Biol Ecol 49:189–202.  https://doi.org/10.1016/0022-0981(81)90070-8 CrossRefGoogle Scholar
  11. Blanchet S, Loot G, Grenouillet G, Brosse S (2007) Competitive interactions between native and exotic salmonids: a combined field and laboratory demonstration. Ecol Freshw Fish 16:133–143.  https://doi.org/10.1111/j.1600-0633.2006.00205.x CrossRefGoogle Scholar
  12. Briffa M, Elwood RW (2004) Use of energy reserves in fighting hermit crabs. Proc R Soc Lond B Biol Sci 271:373–379.  https://doi.org/10.1098/rspb.2003.2633 CrossRefGoogle Scholar
  13. Buchheim JR, Hixon MA (1992) Competition for shelter holes in the coral-reef fish Acanthemblemaria spinosa Metzelaar. J Exp Mar Bio Ecol 164:45–54.  https://doi.org/10.1016/0022-0981(92)90135-W CrossRefGoogle Scholar
  14. Capelle PM, McCallum ES, Balshine S (2015) Aggression and sociality: conflicting or complementary traits of a successful invader? Behaviour 152:127–146.  https://doi.org/10.1163/1568539X-00003235 CrossRefGoogle Scholar
  15. Castro N, Ros AF, Becker K, Oliveira RF (2006) Metabolic costs of aggressive behaviour in the Siamese fighting fish, Betta splendens. Aggress Behav 32:474–480.  https://doi.org/10.1002/ab.20147 CrossRefGoogle Scholar
  16. Chibucos K, Wofford SJ, Moore PA (2015) Hierarchical decision making: resource distribution exhibits stronger effect on crayfish dominance relationships and shelter occupation than prior social experience and resource ownership. Behaviour 152:1063–1082.  https://doi.org/10.1163/1568539X-00003292 CrossRefGoogle Scholar
  17. Chifamba PC, Mauru T (2017) Comparative aggression and dominance of Oreochromis niloticus (Linnaeus, 1758) and Oreochromis mortimeri (Trewavas, 1966) from paired contest in aquaria. Hydrobiologia 788:193–203.  https://doi.org/10.1007/s10750-016-2997-y CrossRefGoogle Scholar
  18. Chou MY, Amo R, Kinoshita M, Cherng BW, Shimazaki H, Agetsuma M, Higashijima SI (2016) Social conflict resolution regulated by two dorsal habenular subregions in zebrafish. Science 352:87–90.  https://doi.org/10.1126/science.aac9508 CrossRefPubMedGoogle Scholar
  19. Chuard PJ, Brown GE, Grant JW (2018) Competition for food in two populations of a wild-caught fish. Curr Zool.  https://doi.org/10.1093/cz/zox078 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Contreras-MacBeath T (1991) Zebras in Mexico. DATZ 44:305–307Google Scholar
  21. Contreras-MacBeath T, Gaspar-Dillanes MT, Huidobro-Campos L, Mejía-Mojica H (2014) Peces invasores en el centro de México. In: Mendoza R, Koleff P (eds) Especies acuáticas invasoras en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, pp 413–424Google Scholar
  22. Cutts CJ, Metcalfe NB, Taylor AC (1999) Competitive asymmetries in territorial juvenile Atlantic salmon, Salmo salar. Oikos 86:479–486.  https://doi.org/10.2307/3546652 CrossRefGoogle Scholar
  23. De La Torre ZAM, Arce UE, Luna-Figueroa J, Córdoba-Aguilar A (2018) Native fish, Cichlasoma istlanum, hide for longer, move and eat less in the presence of a non-native fish, Amatitlania nigrofasciata. Environ Biol Fish 101:1077–1082.  https://doi.org/10.1007/s10641-018-0761-z CrossRefGoogle Scholar
  24. Dijkstra PD, Seehausen O, Groothuis TG (2005) Direct male-male competition can facilitate invasion of new colour types in Lake Victoria cichlids. Behav Ecol Sociobiol 58:136–143.  https://doi.org/10.1007/s00265-005-0919-5 CrossRefGoogle Scholar
  25. Dijkstra PD, Schaafsma SM, Hofmann HA, Groothuis TG (2012) ‘Winner effect’ without winning: unresolved social conflicts increase the probability of winning a subsequent contest in a cichlid fish. Physiol Behav 105:489–492.  https://doi.org/10.1016/j.physbeh.2011.08.029 CrossRefPubMedGoogle Scholar
  26. Dugatkin LA (1997) Winner and loser effects and the structure of dominance hierarchies. Behav Ecol 8:583–587.  https://doi.org/10.1093/beheco/8.6.583 CrossRefGoogle Scholar
  27. Earley RL, Edwards JT, Aseem O, Felton K, Blumer LS, Karom M, Grober MS (2006) Social interactions tune aggression and stress responsiveness in a territorial cichlid fish (Archocentrus nigrofasciatus). Physiol Behav 88:353–363.  https://doi.org/10.1016/j.physbeh.2006.04.002 CrossRefPubMedGoogle Scholar
  28. Elwood RW, Arnott G (2012) Understanding how animals fight with Lloyd Morgan’s canon. Anim Behav 84:1095–1102.  https://doi.org/10.1016/j.anbehav.2012.08.035 CrossRefGoogle Scholar
  29. Engström-Öst J, Karjalainen M, Viitasalo M (2006) Feeding and refuge use by small fish in the presence of cyanobacteria blooms. Environ Biol Fish 76:109–117.  https://doi.org/10.1007/s10641-006-9013-8 CrossRefGoogle Scholar
  30. Esmaeili HR, Teimori A, Feridon OWFI, Abbasi K, Brian WC (2015) Alien and invasive freshwater fish species in Iran: diversity, environmental impacts and management. Iran J Ichthyol 1:61–72.  https://doi.org/10.22034/iji.v1i2.4 CrossRefGoogle Scholar
  31. Everett RA, Ruiz GM (1993) Coarse woody debris as a refuge from predation in aquatic communities. Oecologia 93:475–486.  https://doi.org/10.1007/BF00328954 CrossRefPubMedGoogle Scholar
  32. Fausch KD (1988) Tests of competition between native and introduced salmonids in streams: what have we learned? Can J Fish Aquat Sci 45:2238–2246.  https://doi.org/10.1139/f88-260 CrossRefGoogle Scholar
  33. Ferrari MC, Elvidge CK, Jackson CD, Chivers DP, Brown GE (2010) The responses of prey fish to temporal variation in predation risk: sensory habituation or risk assessment? Behav Ecol 21:532–536.  https://doi.org/10.1093/beheco/arq023 CrossRefGoogle Scholar
  34. Figler MH, Cheverton HM, Blank GS (1999) Shelter competition in juvenile red swamp crayfish (Procambarus clarkii): the influences of sex differences, relative size, and prior residence. Aquaculture 178:63–75.  https://doi.org/10.1016/S0044-8486(99)00114-3 CrossRefGoogle Scholar
  35. Forrester GE, Steele MA (2004) Predator, prey refuges and the spatial scaling of density-dependent prey mortality. Ecology 85:1332–1342.  https://doi.org/10.1890/03-0184 CrossRefGoogle Scholar
  36. Fulmer AG, Neumeister H, Preuss T (2017) Social plasticity in non-territorial male African cichlid fish Astatotilapia burtoni. J Ethol 35:109–119.  https://doi.org/10.1007/s10164-016-0498-0 CrossRefGoogle Scholar
  37. Gherardi F, Cioni A (2004) Agonism and interference competition in freshwater decapods. Behaviour 141:1297–1324.  https://doi.org/10.1163/1568539042729702 CrossRefGoogle Scholar
  38. Godwin SC, Dill LM, Reynolds JD, Krkošek M (2015) Sea lice, sockeye salmon, and foraging competition: lousy fish are lousy competitors. Can J Fish Aquat Sci 72:1113–1120.  https://doi.org/10.1139/cjfas-2014-0284 CrossRefGoogle Scholar
  39. Grabowska J, Kakareko T, Blonska D, Przybylski M, Kobak J, Jermacz L, Copp GH (2015) Interspecific competition for a shelter between non-native racer goby and native European bullhead under experimental conditions. Effects of season, fish size and light conditions. Limnologica 56:30–38.  https://doi.org/10.1016/j.limno.2015.11.004 CrossRefGoogle Scholar
  40. Gregory JS, Griffith JS (1996) Aggressive behaviour of underyearling rainbow trout in simulated winter concealment habitat. J Fish Biol 49:237–245.  https://doi.org/10.1111/j.1095-8649.1996.tb00020.x CrossRefGoogle Scholar
  41. Günther A (1867) VIII—Additions to the knowledge of Australian reptiles and fishes. J Nat Hist 20:45–67Google Scholar
  42. Hazlett BA, Lawler S, Edney G (2007) Agonistic behavior of the crayfish Euastacus armatus and Cherax destructor. Mar Freshwater Behav Physiol 40:257–266.  https://doi.org/10.1080/10236240701562412 CrossRefGoogle Scholar
  43. Heuts BA, Nijman V (1998) Aggressive behaviour of two swordtail colour breeds (Xiphophorus, Poeciliidae) in a prior residence situation. Behav Process 43:251–255.  https://doi.org/10.1016/S0376-6357(98)00006-0 CrossRefGoogle Scholar
  44. Holmes TH, McCormick MI (2010) Size-selectivity of predatory reef fish on juvenile prey. Mar Ecol Prog Ser 399:273–283.  https://doi.org/10.3354/meps08337 CrossRefGoogle Scholar
  45. Huang J, Zheng X, Wu Z, Liu H, Deng F (2016) Can increased structural complexity decrease the predation of an alien crayfish on a native fish? Hydrobiologia 781:1–7.  https://doi.org/10.1007/s10750-016-2844-1 CrossRefGoogle Scholar
  46. Huffard CL, Caldwell RL, Boneka F (2010) Male-male and male-female aggression may influence mating associations in wild octopuses (Abdopus aculeatus). J Comp Psychol 124:38–46.  https://doi.org/10.1037/a0017230 CrossRefPubMedGoogle Scholar
  47. Hurd PL (1997) Cooperative signalling between opponents in fish fights. Anim Behav 54:1309–1315.  https://doi.org/10.1006/anbe.1997.0531 CrossRefPubMedGoogle Scholar
  48. Jordan DS, Snyder JO (1899) Notes on a collection of fishes from the rivers of Mexico, with description of twenty new species. Fish Bull 19:115–147Google Scholar
  49. Junior RSL, Peixoto PEC (2013) Males of the dragonfly Diastatops obscura fight according to predictions from game theory models. Anim Behav 85:663–669.  https://doi.org/10.1016/j.anbehav.2012.12.033 CrossRefGoogle Scholar
  50. Kakareko T, Kobak J, Grabowska J, Jermacz L, Przybylski M, Poznańska M, Pietraszewski D, Copp GH (2013) Competitive interactions for food resources between invasive racer goby Babka gymnotrachelus and native European bullhead Cottus gobio. Biol Invasions 15:2519–2530.  https://doi.org/10.1007/s10530-013-0470-7 CrossRefGoogle Scholar
  51. Kochhann D, Val AL (2017) Social hierarchy and resting metabolic rate in the dwarf cichlid Apistogramma agassizii: the role of habitat enrichment. Hydrobiologia 789:123–131.  https://doi.org/10.1007/s10750-016-2806-7 CrossRefGoogle Scholar
  52. Kochhann D, Campos DF, Val AL (2015) Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii. Comp Biochem Physiol Part A Mol Integr Physiol 190:54–60.  https://doi.org/10.1016/j.cbpa.2015.09.006 CrossRefGoogle Scholar
  53. Krause J, Loader SP, McDermott J, Ruxton GD (1998) Refuge use by fish as a function of body length-related metabolic expenditure and predation risks. Proc R Soc Lond B Biol Sci 265:2373–2379.  https://doi.org/10.1098/rspb.1998.0586 CrossRefGoogle Scholar
  54. Lacerda LD, Costa BGBC, Lopes DN, Oliveira K, Bezerra MF, Bastos WR (2014) Mercury in indigenous, introduced and farmed fish from the semiarid region of the Jaguaribe River basin, NE Brazil. Bull Environ Contam Toxicol 93:31–35.  https://doi.org/10.1007/s00128-014-1263-0 CrossRefPubMedGoogle Scholar
  55. Lehtonen TK (2008) Convict cichlids benefit from close proximity to another species of cichlid fish. Biol Lett 4:610–612.  https://doi.org/10.1098/rsbl.2008.0378 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lorenz OT, O’Connell MT, Schofield PJ (2011) Aggressive interactions between the invasive Rio Grande cichlid (Herichthys cyanoguttatus) and native bluegill (Lepomis macrochirus), with notes on redspotted sunfish (Lepomis miniatus). J Ethol 29:39–46.  https://doi.org/10.1007/s10164-010-0219-z CrossRefGoogle Scholar
  57. Luna-Figueroa J (2007) Efecto de larvas de mosquito Culex stigmatosoma (Dyar) como alimento vivo sobre la tasa de crecimiento y la sobrevivencia de la mojarra criolla Cichlasoma istlanum (Jordan y Snyder). Nat Desarro 5:11–16Google Scholar
  58. Luna-Figueroa J, Torres JF (2016) Reproducción y crecimiento en cautiverio de la mojarra criolla Cichlasoma istlanum (Pisces: Cichlidae). AquaTIC 10:1–13Google Scholar
  59. Magalhães ALBD, Jacobi CM (2013) Invasion risks posed by ornamental freshwater fish trade to southeastern Brazilian rivers. Neotrop Ichthyol 11:433–441.  https://doi.org/10.1590/S1679-62252013005000003 CrossRefGoogle Scholar
  60. Magellan K, García-Berthou E (2016) Experimental evidence for the use of artificial refugia to mitigate the impacts of invasive Gambusia holbrooki on an endangered fish. Biol Invasions 18:873–882.  https://doi.org/10.1007/s10530-016-1057-x CrossRefGoogle Scholar
  61. Martin AL, Moore PA (2007) Field observations of agonism in the crayfish, Orconectes rusticus: shelter use in a natural environment. Ethology 113:1192–1201.  https://doi.org/10.1111/j.1439-0310.2007.01429.x CrossRefGoogle Scholar
  62. Martin CW, Valentine MM, Valentine JF (2010) Competitive interactions between invasive Nile tilapia and native fish: the potential for altered trophic exchange and modification of food webs. PLoS One 5:14395.  https://doi.org/10.1371/journal.pone.0014395 CrossRefGoogle Scholar
  63. McKaye KR (1977) Competition for breeding sites between the cichlid fishes of Lake Jiloá, Nicaragua. Ecology 58:291–302.  https://doi.org/10.2307/1935604 CrossRefGoogle Scholar
  64. McLaughlin KE, Kunc HP (2015) Changes in the acoustic environment alter the foraging and sheltering behaviour of the cichlid Amatitlania nigrofasciata. Behav Proc 116:75–79.  https://doi.org/10.1016/j.beproc.2015.04.012 CrossRefGoogle Scholar
  65. Mejía-Mojica H, de Jesús Rodríguez-Romero F, Díaz-Pardo E (2012) Recurrencia histórica de peces invasores en la Reserva de la Biósfera Sierra de Huautla, México. Rev Biol Trop 60:669–681CrossRefGoogle Scholar
  66. Mendoza-Alfaro RE, Koleff-Osorio P, Ramírez-Martínez C, Orbe-Mendoza A (2011) La evaluación de riesgos por especies acuáticas exóticas invasoras: una visión compartida para Norteamérica. Cienc Pesq 19:65–75Google Scholar
  67. Mooney HA, Cleland EEM (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451CrossRefGoogle Scholar
  68. Moretz JA (2003) Aggression and RHP in the northern swordtail fish, Xiphophorus cortezi: the relationship between size and contest dynamics in male–male competition. Ethology 109:995–1008.  https://doi.org/10.1046/j.0179-1613.2003.00938.x CrossRefGoogle Scholar
  69. Moretz JA, Martins EP, Robison BD (2007) Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behav Ecol 18:556–562.  https://doi.org/10.1093/beheco/arm011 CrossRefGoogle Scholar
  70. Nakano S (1995) Individual differences in resource use, growth and emigration under the influence of a dominance hierarchy in fluvial red-spotted masu salmon in a natural habitat. J Anim Ecol.  https://doi.org/10.2307/5828 CrossRefGoogle Scholar
  71. Nelissen MH (1992) Does body size affect the ranking of a cichild fish in a dominance hierarchy? J Ethol 10:153–156.  https://doi.org/10.1007/BF02350121 CrossRefGoogle Scholar
  72. O’Connor CM, Reddon AR, Ligocki IY, Hellmann JK, Garvy KA, Marsh-Rollo SE, Hamilton M, Balshine S (2015) Motivation but not body size influences territorial contest dynamics in a wild cichlid fish. Anim Behav 107:19–29.  https://doi.org/10.1016/j.anbehav.2015.06.001 CrossRefGoogle Scholar
  73. Oldfield RG, Hofmann HA (2011) Neuropeptide regulation of social behavior in a monogamous cichlid fish. Physiol Behav 102:296–303.  https://doi.org/10.1016/j.physbeh.2010.11.022 CrossRefPubMedGoogle Scholar
  74. Oliveira RF, Almada VC (1996) Dominance hierarchies and social structure in captive groups of the Mozambique tilapia Oreochromis mossambicus (Teleostei Cichlidae). Ethol Ecol Evol 8:39–55.  https://doi.org/10.1080/08927014.1996.9522934 CrossRefGoogle Scholar
  75. Parker GA (1974) Assessment strategy and the evolution of fighting behaviour. J Theor Biol 47:223–243.  https://doi.org/10.1016/0022-5193(74)90111-8 CrossRefPubMedGoogle Scholar
  76. Paterson RA, Lal A, Dale M, Townsend CR, Poulin R, Tompkins DM (2013) Relative competence of native and exotic fish hosts for two generalist native trematodes. Int J Parasitol Parasites Wildl 2:136–143.  https://doi.org/10.1016/j.ijppaw.2013.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Peña E, Pauchard A (2001) Coníferas introducidas en unidades del SNASPE: un riesgo para la biodiversidad. Bosque Nativo 30:3–7Google Scholar
  78. Persson L (1983) Food consumption and the significance of detritus and algae to intraspecific competition in roach Rutilus rutilus in a shallow eutrophic lake. Oikos 41:118–125.  https://doi.org/10.2307/3544353 CrossRefGoogle Scholar
  79. Poulos DE, McCormick MI (2015) Asymmetries in body condition and order of arrival influence competitive ability and survival in a coral reef fish. Oecologia 179:719–728.  https://doi.org/10.1007/s00442-015-3401-8 CrossRefPubMedGoogle Scholar
  80. Price J, Sloman L, Gardner R, Gilbert P, Rohde P (1994) The social competition hypothesis of depression. Br J Psychiatry 164:309–315.  https://doi.org/10.1192/bjp.164.3.309 CrossRefPubMedGoogle Scholar
  81. Raymond WW, Albins MA, Pusack TJ (2015) Competitive interactions for shelter between invasive Pacific red lionfish and native Nassau grouper. Environ Biol Fish 98:57–65.  https://doi.org/10.1007/s10641-014-0236-9 CrossRefGoogle Scholar
  82. Reddon AR, Hurd PL (2009) Differences in aggressive behavior between convict cichlid color morphs: amelanistic convicts lose even with a size advantage. Acta Ethol 12:49–53.  https://doi.org/10.1007/s10211-009-0054-9 CrossRefGoogle Scholar
  83. Roche DG, Leung B, Franco EFM, Torchin ME (2010) Higher parasite richness, abundance and impact in native versus introduced cichlid fishes. Int J Parasitol 40:1525–1530.  https://doi.org/10.1016/j.ijpara.2010.05.007 CrossRefPubMedGoogle Scholar
  84. Ruiz GM, Hines AH, Posey MH (1993) Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: an example from Chesapeake Bay. Mar Ecol Prog Ser 99:1–16 CrossRefGoogle Scholar
  85. Savvides P, Louca V, Sfenthourakis S (2015) Competition for shelter occupancy between a native freshwater crab and an invasive crayfish. Aquat Ecol 49:273–278.  https://doi.org/10.1007/s10452-015-9522-7 CrossRefGoogle Scholar
  86. Taborsky B, Oliveira RF (2012) Social competence: an evolutionary approach. Trends Ecol Evol 27:679–688.  https://doi.org/10.1016/j.tree.2012.09.003 CrossRefPubMedGoogle Scholar
  87. Tarkan AS, Gaygusuz Ö, Gürsoy Gaygusuz Ç, Saç G, Copp GH (2012) Circumstantial evidence of gibel carp, Carassius gibelio, reproductive competition exerted on native fish species in a mesotrophic reservoir. Fish Manage Ecol 19:167–177.  https://doi.org/10.1111/j.1365-2400.2011.00839.x CrossRefGoogle Scholar
  88. Tiira K, Laurila A, Enberg K, Piironen J (2009) Short-term dominance: stability and consequences for subsequent growth. J Fish Biol 74:2374–2385.  https://doi.org/10.1111/j.1095-8649.2009.02253.x CrossRefPubMedGoogle Scholar
  89. Tran MV, O’Grady M, Colborn J, Ness KV, Hill RW (2014) Aggression and food resource competition between sympatric hermit crab species. PLoS One 9:91823.  https://doi.org/10.1371/journal.pone.0091823 CrossRefGoogle Scholar
  90. Tupper M, Juanes F (2017) Testing foraging arena theory: the effects of conspecific density and habitat type on time and energy budgets of juvenile cunner. J Exp Mar Bio Ecol 487:86–93.  https://doi.org/10.1016/j.jembe.2016.12.001 CrossRefGoogle Scholar
  91. Turra A, Denadai MR (2004) Interference and exploitation components in interespecific competition between sympatric intertidal hermit crabs. J Exp Mar Bio Ecol 310:183–193.  https://doi.org/10.1016/j.jembe.2004.04.008 CrossRefGoogle Scholar
  92. Vannini M, Gherardi F (1981) Dominance and individual recognition in Potamon fluviatile (Decapoda, Brachyura): possible role of visual cues. Mar Freshwater Behav Physiolsiol 8:13–20.  https://doi.org/10.1080/10236248109386999 CrossRefGoogle Scholar
  93. Wazlavek BE, Figler MH (1989) Territorial prior residence, size asymmetry, and escalation of aggression in convict cichlids (Cichlasoma nigrofasciatum Günther). Aggress Behav 15:235–244.  https://doi.org/10.1002/1098-2337(1989)15:3%3c235:AID-AB2480150305%3e3.0.CO;2-C CrossRefGoogle Scholar
  94. Wisenden BD (1995) Reproductive behaviour of free-ranging convict cichlids, Cichlasoma nigrofasciatum. Environ Biol Fish 43:121–134.  https://doi.org/10.1007/BF00002480 CrossRefGoogle Scholar

Copyright information

© Japan Ethological Society and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Maestría en Manejo de Recursos Naturales, Centro de Investigaciones BiológicasUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  2. 2.Laboratorio de Acuicultura, Departamento de Hidrobiología, Centro de Investigaciones BiológicasUniversidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations