Advertisement

Journal of Ethology

, Volume 37, Issue 1, pp 13–20 | Cite as

A matter of choice: substrate preference by burrow-digging males of a sand-dwelling spider

  • Andrea AlbínEmail author
  • Gustavo Bardier
  • Alfredo V. Peretti
  • Miguel Simó
  • Anita Aisenberg
Article

Abstract

Animals may build refuges to avoid predation, to communicate, to mate, and to protect against extreme temperatures, among other factors. Allocosa senex is a wolf spider that constructs burrows in the coastal sand dunes of South America. The distribution of A. senex includes beaches with different granulometry, which could affect burrow characteristics and energetic costs of excavation. Males are the digging sex and their burrows are mating and oviposition sites. We aimed to test substrate preference of males of A. senex simultaneously exposed to coarse- (CS) and fine-grain sand (FS) (n = 30) and study digging behavior in both substrates. Regardless of their substrate of origin, males significantly preferred CS for digging (males from CS habitat, 23/30, P = 0.001; males from FS habitat, 20/30, P = 0.02). Males from the FS habitat showed higher weight and better body condition. Digging behavior showed similar patterns in both types of substrate but resting duration was longer when males dug in CS. Although males of A. senex can dig in both substrates, this study shows their preference for digging in CS, a substrate that is possibly less energetically demanding for that behavior.

Keywords

Substrate choice Energetically demanding activity Burrowing spiders Digging plasticity 

Notes

Acknowledgements

We thank L. Bidegaray, F. Bollatti, M. Carballo, F. Cargnelutti, T. Casacuberta, M. Casacuberta, G. De Simone, Á. Laborda, M. González, L. Montes de Oca, and M. Trillo for their help in the fieldwork and breeding of spiders. We are grateful to P. Pintos and R. Postiglioni for their help with the box plots and figures. We thank Petr Dolejš, one anonymous reviewer, and the editor for their suggestions that improved the final version of the manuscript. This research was funded by the National Agency for Research and Innovation under the code POS_NAC_2013_1_555 awarded to A. Albín. A. Aisenberg and M. Simó acknowledge financial support from the Programa Desarrollo de Ciencias Básicas and the Sistema Nacional de Investigadores.

References

  1. Aisenberg A (2014) Adventurous females and the demanding males: sex role reversal in a Neotropical spider. In: Macedo RH, Machado G (eds) Sexual selection: perspectives and models from the neotropics. Academic Press, California, pp 163–182Google Scholar
  2. Aisenberg A, Peretti AV (2011) Male burrow digging in a sex-role reversed spider inhabiting water-margin environments. Bull Br Arach Soc 15:201–204Google Scholar
  3. Aisenberg A, Viera C, Costa FG (2007) Daring females, devoted males, and reversed sexual size dimorphism in the sand dwelling spider Allocosa brasiliensis (Araneae, Lycosidae). Behav Ecol Sociobiol 62:29–35CrossRefGoogle Scholar
  4. Aisenberg A, González M, Laborda A, Postiglioni R, Simó M (2011a) Spatial distribution, burrow depth and temperature: implications for the sexual strategies in two Allocosa wolf spiders. Stud Neotrop Fauna Environ 46:147–152CrossRefGoogle Scholar
  5. Aisenberg A, Costa FG, González M (2011b) Male sexual cannibalism in a sand-dwelling wolf spider with sex role reversal. Biol J Linn Soc 103:68–75CrossRefGoogle Scholar
  6. Albín A, Simó M, Aisenberg A (2015) Characterization of burrow architecture under natural conditions in the sand-dwelling wolf spider Allocosa brasiliensis. J Nat Hist 14:22–29Google Scholar
  7. Alderweireldt M, Jocque R (1991) A remarkable new genus of wolf spiders from southwestern Spain (Araneae, Lycosidae). Bull Inst R Sci Nat Belg Entomol 61:103–111Google Scholar
  8. Bansemer C, Grutter AS, Poulin R (2002) Geographic variation in the behaviour of the cleaner fish. Ethology 108:353–366CrossRefGoogle Scholar
  9. Berger D, Olofsson M, Friberg M, Karlsson B, Wiklund C, Gotthard K (2012) Intraspecific variation in body size and the rate of reproduction in female insects–adaptive allometry or biophysical constraint? J Anim Ecol 81:1244–1258CrossRefPubMedGoogle Scholar
  10. Blumstein DT, Evans CS, Daniel JC (2000) JWatcher. http://galliform.psy.mq.edu.au/jwatcher/. Accessed 2015 May 16
  11. Bollatti F, Garcia Diaz V, Peretti AV, Aisenberg A (2017) Geographical variation in sexual behavior and body traits in a sex role reversed wolf spider. Sci Nat 104:40CrossRefGoogle Scholar
  12. Capocasale RM (1990) Las especies de la subfamilia Hipassinae de América del Sur (Araneae, Lycosidae). J Arachnol 18:131–141Google Scholar
  13. Carballo M, Baldenegro F, Bollatti F, Peretti AV, Aisenberg A (2017) No pain, no gain: male plasticity in burrow digging according to female rejection in a sand-dwelling wolf spider. Behav Proc 140:171–180CrossRefGoogle Scholar
  14. Costa FG (1995) Ecología y actividad diaria de las arañas de la arena Allocosa spp. (Araneae, Lycosidae) en Marindia, localidad costera del sur del Uruguay. Rev Bras Biol 55:457–466Google Scholar
  15. Costa FG, Simo M, Aisenberg A (2006) Composición y ecología de la fauna epigea de Marindia (Canelones, Uruguay) con especial énfasis en las arañas: un estudio de dos años con trampas de intercepción. In: Rodríguez-Gallego L, Scarabino F, Conde D, Menafra R (eds) Bases para la conservación y el manejo de la costa uruguaya. Vida Silvestre Uruguay, Montevideo, pp 427–436Google Scholar
  16. Dugan JE, Hubbard DM, Lastra M (2000) Burrowing abilities and swash behavior of three crabs, Emerita analoga Stimpson, Blepharipoda occidentalis Randall, and Lepidopa californica Efford (Anomura, Hippoidea), of exposed sandy beaches. J Exp Mar Biol Ecol 255:229–245CrossRefPubMedGoogle Scholar
  17. Eberhard WG, Huber BA, Rodrıguez SRL, Briceno RD, Salas L, Rodrıguez V (1998) One size fits all? Relationships between the size and degree of variation in genitalia and other body parts in twenty species of insects and spiders. Evolution 52:415–431CrossRefGoogle Scholar
  18. Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  19. Foelix R, Rechenberg I, Erb B, Albín A, Aisenberg A (2017) Sand transport and burrow construction in sparassid and lycosid spiders. J Arachnol 45:255–264CrossRefGoogle Scholar
  20. González M, Peretti AV, Costa FG (2015) Reproductive isolation between two populations of Aglaoctenus lagotis, a funnel-web wolf spider. Biol J Linn Soc 114:646–658CrossRefGoogle Scholar
  21. Gwynne DT, Watkiss J (1975) Burrow blocking behaviour in Geolycosa wrightii (Araneae: lycosidae). Anim Behav 23:953–956CrossRefGoogle Scholar
  22. Hammer O, Harper DAT, Ryan PD (2003) Past Palaeontological, version 1.18. Copyright Hammer and Harper. http://folk.uio.no/ohammer/past. Accessed 15 Mar 2015
  23. Hansell MH (2005) Animal architecture. Oxford University Press, New York, p 336CrossRefGoogle Scholar
  24. Hausch S, Shurin JB, Matthews B (2013) Variation in body shape across species and populations in a radiation of Diaptomid Copepods. PLoS One 8:e68272CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hembree DI (2013) Neoichnology of the whip scorpion Mastigoproctus giganteus: complex burrows of predatory terrestrial arthropods. Palaios 28:141–162CrossRefGoogle Scholar
  26. Henschel JR (1990) The biology of Leucorchestris arenicola (Araneae: Heteropodidae), a burrowing spider of the Namib dunes. In: Seely MK (eds) Namib ecology: 25 years of Namib research. Transvaal museum monograph no. 7. Transvaal Museum, Pretoria, p 115–127Google Scholar
  27. Henschel JR (1995) Tool use by spiders: stone selection and placement by corolla spiders Ariadna (Segestriidae) of the Namib Desert. Ethology 101:87–199Google Scholar
  28. Henschel JR, Lubin YD (1992) Environmental factors affecting the web and activity of a psammophilous spider in the Namib Desert. J Arid Environ 22:173–189CrossRefGoogle Scholar
  29. Henschel JR, Lubin YD (1997) A test of habitat selection at two spatial scales in a sit-and-wait predator: a web spider in the Namib Desert dunes. J Anim Ecol 66:401–413CrossRefGoogle Scholar
  30. Jorge C, Laborda A, Alves Días M, Aisenberg A, Simó M (2015) Habitat preference and effects of coastal fragmentation in the sand-dwelling spider Allocosa brasiliensis (Lycosidae; Allocosinae) Open. J Anim Sci 5:309–324Google Scholar
  31. Kolluru GR, Green ZS, Vredovoe LK, Kuzma MR, Ramadan SN, Zosky MR (2011) Parasite infection and sand coarseness increase sand crab (Emerita analoga) burrowing time. Behav Processes 88:184–191CrossRefPubMedGoogle Scholar
  32. Lamoral BH (1978) Soil hardness, an important and limiting factor in burrowing scorpions of the genus Opisthophthalmus C. L. Koch, 1837 (Scorpionidae, scorpionida). Symp Zool Soc Lond 42:171–181Google Scholar
  33. Logunov DV (2011) Sexual size dimorphism in burrowing wolf spiders (Araneae: lycosidae). Proc Zool Inst 315:274–288Google Scholar
  34. Main BY (1982) Adaptations to arid habitats by mygalomorph spiders. In: Barker WR, Greenslade PJM (eds) Evolution of the flora and fauna of Australia). Peacock, Anzaas S, Australian Division, pp 273–283Google Scholar
  35. Marshall SD, Gittleman JL (1994) Clutch size in spiders: is more better? Funct Ecol 8:118–124CrossRefGoogle Scholar
  36. Morrisey DJ, DeWitt TH, Roper DS, Williamson RB (1999) Variation in the depth and morphology of burrows of the mud crab Helice crassa among different types of intertidal sediment in New Zealand. Mar Ecol Prog Ser 182:231–242CrossRefGoogle Scholar
  37. Moya-Laraño J, Pascual J, Wise DH (2003) Mating patterns in late-maturing female Mediterranean tarantulas may reflect the costs and benefits of sexual cannibalism. Anim Behav 66:469–476CrossRefGoogle Scholar
  38. Nussey DH, Wilson AJ, Brommer JE (2007) The evolutionary ecology of individual phenotypic plasticity in wild populations. J Evol Biol 20:831–844CrossRefPubMedGoogle Scholar
  39. Okano J, Kikuchi E, Sasaki O (2010) The role of particle surface texture on case material selection and silk lining in caddis flies. Behav Ecol 21:826–835CrossRefGoogle Scholar
  40. Olivero PA, Mattoni CI, Peretti AV (2012) Morphometry and geographical variation of Bothriurus bonariensis (Scorpiones: bothriuridae). J Arachnol 40:113–122CrossRefGoogle Scholar
  41. Pérez-Miles F, Costa FG, Toscano-Gadea C, Mignone A (2005) Ecology and behaviour of the ‘road tarantulas’ Eupalaestrus weijenberghi and Acanthoscurria suina (Araneae, Theraphosidae) from Uruguay. J Nat Hist 39:483–498CrossRefGoogle Scholar
  42. Polis GA (1990) The biology of scorpions. Stanford University Press, California, p 587Google Scholar
  43. Prestwich KN (1977) The energetics of web-building in spiders. Comparative Biochem Physiol 57:321–326CrossRefGoogle Scholar
  44. Punzo F (1998) The biology of camel-spiders: Arachnida, Solifugae. Kuwer, DordrechtCrossRefGoogle Scholar
  45. Punzo F, Henderson L (1999) Aspects of the natural history and behavioural ecology of the tarantula spider Aphonopelma hentzi (Orthognatha, Theraphosidae). Bull Br Arachnol Soc 11:121–128Google Scholar
  46. Puzin C, Leroy B, Pétillon J (2014) Intra-and inter-specific variation in size and habitus of two sibling spider species (Araneae: lycosidae): taxonomic and biogeographic insights from sampling across Europe. Biol J Linn Soc 113:85–96CrossRefGoogle Scholar
  47. Réale D, McAdam AG, Boutin S, Berteaux D (2003) Genetic and plastic responses of a northern mammal to climate change. Proc R Soc Lond Biol 270:591–596CrossRefGoogle Scholar
  48. Schäuble CS (2004) Variation in body size and sexual dimorphism across geographical and environmental space in the frogs Limnodynastes tasmaniensis and L. peronii. Biol J Linn Soc 82:39–56CrossRefGoogle Scholar
  49. Shook RS (1978) Ecology of the wolf spider, Lycosa carolinensis Walckenaer (Araneae, Lycosidae) in a desert community. J Arachnol 6:53–64Google Scholar
  50. Simó M, Lise AA, Pompozzi G, Laborda A (2017) On the taxonomy of southern South American species of the wolf spider genus Allocosa (Araneae: Lycosidae: Allocosinae). Zootaxa 4216:61–278CrossRefGoogle Scholar
  51. Suter RB, Stratton GE, Miller PR (2011) Mechanics and energetics of excavation by burrowing wolf spiders. Geolycosa spp. J Insect Sci 11:22CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tso IM, Haupt J, Zhu MS (2003) The trapdoor spider family Ctenizidae (Arachnida: Araneae) from Taiwan. Raffles Bull Zool 51:25–33Google Scholar
  53. Warburg MR, Polis GA (1990) Behavioral responses, rhythms, and activity patterns. In: Polis GA (ed) The biology of scorpions. Stanford University Press, California, pp 224–246Google Scholar
  54. West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278CrossRefGoogle Scholar

Copyright information

© Japan Ethological Society and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ecología y Biología EvolutivaInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  2. 2.Sección Entomología, Facultad de CienciasUniversidad de La RepúblicaMontevideoUruguay
  3. 3.Laboratorio de Biología Reproductiva y Evolución, Cátedra de Diversidad Animal I, F.C.E.F.NUniversidad Nacional de CórdobaCórdobaArgentina
  4. 4.Instituto de Diversidad y Ecología AnimalCONICET-UNCCórdobaArgentina

Personalised recommendations