Journal of Ethology

, Volume 37, Issue 1, pp 1–11 | Cite as

Harmonic and temporal structure of electric organ discharges of the wave-type in Amazonian knifefishes (Gymnotiformes)

  • Leo Bernd KramerEmail author


Neotropical, nocturnal freshwater knifefishes of the families Sternopygidae and Apteronotidae are electroreceptive, and emit electric organ discharges (EODs) of the wave type for communication and active electrolocation. In a field-collected sample of an estimated 43 gymnotiform species, members of the former family displayed the same type of sinusoidal EOD waveform at frequencies of up to about 800 Hz, with the fundamental frequency, f1, the strongest harmonic in each. Members of the latter (Apteronotidae) displayed f1 frequencies of up to 1800 Hz, and a great diversity in EOD waveform. Apteronotid EODs often differed from those of sternopygids by more harmonics at stronger amplitudes, where f1 was not always the strongest harmonic. The frequency band at −10 dB increased with diminishing f1 amplitude. In contrast to apteronotids, all sternopygids showed the same phase relationship between their respective f1 and f2: a difference of an average 72°, which explains their single type of sinusoidal waveform. In apteronotids a great variety of phase relationships among harmonics was observed, in some their harmonics series cycled through 360° repeatedly. It is argued that the evolutionary driving force for the apteronotids — in contrast to sternopygids — was the greater potential for adaptive radiation.


Signal waveform Amplitude spectrum Phase spectrum Sternopygidae Apteronotidae Total harmonic distortion Evolutionary driving force Carrier frequency 



This study was instigated by the late Professor Hubert Markl who also took part in the field study. The host institution at Manaus was the Instituto Nacional de Pesquisas da Amazônia (INPA), and basic support provided by Dr. W.E. Kerr (Director), Dr. W.J. Junk and staff of the ichthyological department. Frank Kirschbaum assisted in catching and determining the fishes. I owe thanks and gratitude to all.


This study was funded by Deutsche Forschungsgemeinschaft, grants Ma 374/10, Kr 446/8, and associated travel grants for the field study in Brazil.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed.


  1. Albert JS (1995) Phylogenetic systematics of the American knifefishes (Teleostei: Gymnotoidei). Unpubl. Ph.D. diss., University of Michigan, Ann ArborGoogle Scholar
  2. Albert JS, Campos-da-Paz R (1998) Phylogenetic systematics of Gymnotiformes with diagnoses of 58 clades: a review of available data. In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds) Phylogeny and classification of Neotropical fishes. Edipucrs, Porto Alegre, pp 419–446Google Scholar
  3. Albert JS, Crampton WGR (2005) Diversity and phylogeny of Neotropical electric fishes (Gymnotiformes). In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer, New York, pp 360–409CrossRefGoogle Scholar
  4. Albert JS, Fink WL (1996) Sternopygus xingu, a new species of electric fish from Brazil (Teleostei: Gymnotoidei), with comments on the phylogenetic position of Sternopygus. Copeia 1996:85–102CrossRefGoogle Scholar
  5. Albert JS, Lannoo MJ, Yuri T (1998) Testing hypotheses of neural evolution in gymnotiform electric fishes using phylogenetic character data. Evolution 52:1760–1780CrossRefPubMedGoogle Scholar
  6. Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, New York, pp 347–491Google Scholar
  7. Boeseman M (1952) A preliminary list of Surinam fishes not included in Eigenmann’s enumeration of 1912. Zoologische Mededelingen 31:179–200Google Scholar
  8. Bracewell RN (1989) The Fourier transform. Sci Am 260(6):62–69CrossRefGoogle Scholar
  9. Bracewell RN (2000) The Fourier transform and its applications, 3rd edn. McGraw-Hill, BostonGoogle Scholar
  10. Bullock TH, Heiligenberg W (eds) (1986) Electroreception. Wiley, New YorkGoogle Scholar
  11. Bullock TH, Hamstra RH, Scheich H (1972) The jamming avoidance response of high frequency electric fish. I. General features. J Comp Physiol A 77:1–22CrossRefGoogle Scholar
  12. Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) (2005) Electroreception. Springer, New YorkGoogle Scholar
  13. Campos-da-Paz R (1995) Revision of the South American freshwater fish genus Sternarchorhamphus Eigenmann, 1905 (Ostariophysi: Gymnotiformes: Apteronotidae), with notes on its relationships. Proc Biol Soc Wash 108:29–44Google Scholar
  14. Campos-da-Paz R, Paepke H-J (1994) On Sternarchorhamphus hahni, a member of the rhamphichthyid genus Rhamphichthys (Ostariophysi: Gymnotiformes). Ichthyol Explor Freshw 5:155–159Google Scholar
  15. Campos-da-Paz R, Queiroz IR (2017) A new species of Eigenmannia Jordan and Evermann (Gymnotiformes: Sternopygidae) from the upper rio Paraguai basin. Zootaxa. CrossRefPubMedGoogle Scholar
  16. de Oliveira-Castro G (1955) Differentiated nervous fibers that constitute the electric organ of Sternarchus albifrons L. Anais Acad Bras Cien 27:557–560Google Scholar
  17. de Santana CD, Cox Fernandes C (2012) A new species of sexually dimorphic electric knifefish from the Amazon Basin, Brazil (Gymnotiformes: Apteronotidae). Copeia 2012:283–292CrossRefGoogle Scholar
  18. de Santana CD, Vari RP (2013) Brown ghost electric fishes of the Apteronotus leptorhynchus species-group (Ostariophysi, Gymnotiformes); monophyly, major clades, and revision. J Linn Soc 168:564–596CrossRefGoogle Scholar
  19. Dutra GM, de Santana CD, Wosiacki WB (2017) A new species of the glass electric knifefish genus Eigenmannia Jordan and Evermann (Teleostei: Gymnotiformes: Sternopygidae) from Río Tuíra basin, Panama. Copeia 105:85–91CrossRefGoogle Scholar
  20. Eschmeyer WN, Fricke R, van der Laan R (2018) (eds) Catalog of fishes: genera, species, references. Electronic version. Accessed 18 May 2018
  21. Fowler HW (1951) Os peixes de agua doce do Brasil. Arquivos de Zoologia do Estado de Sao Paulo 6:405–628Google Scholar
  22. Gottschalk B, Scheich H (1979) Phase sensitivity and phase coupling: common mechanisms for communication behaviors in gymnotid wave and pulse species. Behav Ecol Sociobiol 4:395–408CrossRefGoogle Scholar
  23. Hagedorn M (1986) The ecology, courtship, and mating of gymnotiform electric fish. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 497–525Google Scholar
  24. Heiligenberg W, Baker C, Matsubara J (1978) The jamming avoidance response in Eigenmannia revisited: the structure of a neural democracy. J Comp Physiol A 127:267–286CrossRefGoogle Scholar
  25. Hoedeman JJ (1962) Notes on the ichthyology of Surinam and other Guianas. 11. New gymnotoid fishes from Surinam and French Guiana, with additional records and a key to the groups and species from Guiana. Bull Aquat Biol 3(30):97–108Google Scholar
  26. Hopkins CD (1974a) Electric communication in the reproductive behavior of Sternopygus macrurus (Gymnotoidei). Z Tierpsychol 35:518–535CrossRefPubMedGoogle Scholar
  27. Hopkins CD (1974b) Electric communication: functions in the social behavior of Eigenmannia virescens. Behaviour 50:270–305CrossRefGoogle Scholar
  28. Kaunzinger I, Kramer B (1995) Electrosensory stimulus-intensity thresholds in the weakly electric knifefish Eigenmannia: reduced sensitivity at harmonics of its own organ discharge. J Exp Biol 198:2365–2372PubMedGoogle Scholar
  29. Kaunzinger I, Kramer B (1996) Electrosensory phase sensitivity in the weakly electric fish Eigenmannia in the detection of signals similar to its own. J Comp Physiol A 179:323–330CrossRefGoogle Scholar
  30. Kirschbaum F (1977) Electric organ ontogeny. Distinct larval organ precedes the adult organ in weakly electric fish. Naturwissenschaften 64:387–388CrossRefGoogle Scholar
  31. Kirschbaum F (1983) Myogenic electric organ precedes the neurogenic organ in apteronotid fish. Naturwissenschaften 70:205–207CrossRefPubMedGoogle Scholar
  32. Kramer B (1985) Jamming avoidance in the electric fish Eigenmannia: harmonic analysis of sexually dimorphic waves. J Exp Biol 119:41–69Google Scholar
  33. Kramer B (1987) The sexually dimorphic jamming avoidance response in the electric fish Eigenmannia (Teleostei, Gymnotiformes). J Exp Biol 130:39–62Google Scholar
  34. Kramer B (1990) Electrocommunication in teleost fishes: behavior and experiments. Springer, BerlinCrossRefGoogle Scholar
  35. Kramer B (1996) Electroreception and communication in fishes. Gustav Fischer Verlag, StuttgartGoogle Scholar
  36. Kramer B (1999) Waveform discrimination, phase sensitivity and jamming avoidance in a wave-type electric fish. J Exp Biol 202:1387–1398PubMedGoogle Scholar
  37. Kramer B, Otto B (1988) Female discharges are more electrifying: spontaneous preference in the electric fish, Eigenmannia. Behav Ecol Sociobiol 23:55–60CrossRefGoogle Scholar
  38. Kramer B, Otto B (1991) Waveform discrimination in the electric fish Eigenmannia: sensitivity for the phase differences between the spectral components of a stimulus wave. J Exp Biol 159:1–22Google Scholar
  39. Kramer B, Teubl H (1993) Spectral phase sensitivity in the communication of a wave-type electric fish. Naturwissenschaften 80:575–578CrossRefGoogle Scholar
  40. Kramer B, Zupanc GKH (1986) Conditioned discrimination of electric waves differing only in form and harmonic content in the electric fish, Eigenmannia. Naturwissenschaften 73:679–680CrossRefGoogle Scholar
  41. Kramer B, Kirschbaum F, Markl H (1981) Species specificity of electric organ discharges in a sympatric group of gymnotoid fish from Manaus (Amazonas). In: Szabo T, Czéh G (eds) Sensory physiology of aquatic lower vertebrates. Advances in Physiological Sciences (vol. 31): Pergamon Press/Akadémiai Kiadó, Budapest, pp 195–219Google Scholar
  42. Lundberg JG, Mago-Leccia F (1986) A review of Rhabdolichops (Gymnotiformes, Sternopygidae), a genus of South American freshwater fishes, with descriptions of four new species. Proc Acad Nat Sci Phila 138(1):53–85Google Scholar
  43. Mago-Leccia F (1978) Los peces de la familia Sternopygidae de Venezuela, incluyendo un descripcion de la osteologia de Eigenmannia virescens y una nueva definicion y clasificacion del orden Gymnotiformes. Acta Cient Venez 29(Supl. 1):1–89Google Scholar
  44. Mago-Leccia F (1994) Electric fishes of the continental waters of America. Classification and catalogue of the electric fishes of the order Gymnotiformes (Teleostei: Ostariophysi), with descriptions of new genera and species. FUDECI (Fundacion para el Desarrollo de las Ciencias Fisicas, Matematicas y Naturales), CaracasGoogle Scholar
  45. Mago-Leccia F, Zaret TM (1978) The taxonomic status of Rhabdolichops troscheli (Kaup, 1856), and speculations on gymnotiform evolution. Environ Biol Fish 3:379–384CrossRefGoogle Scholar
  46. Mago-Leccia F, Lundberg JG, Baskin JN (1985) Systematics of the South American freshwater fish genus Adontosternarchus (Gymnotiformes, Apteronotidea). Contr Sci Nat Hist Mus Los Angel Cty 358:1–19Google Scholar
  47. Moller P (1995) Electric fishes: history and behavior. Chapman & Hall, LondonGoogle Scholar
  48. Peixoto LAW, Waltz BT (2017) A new species of the Eigenmannia trilineata (Gymnotiformes: Sternopygidae) species group from the río Orinoco basin, Venezuela. Neotropical Ichthyol 15:1–8CrossRefGoogle Scholar
  49. Peixoto LAW, Wosiacki WB (2016) Eigenmannia besouro, a new species of the Eigenmannia trilineata species-group (Gymnotiformes: Sternopygidae) from the rio São Francisco basin, northeastern Brazil. Zootaxa 4126(2):262–270CrossRefPubMedGoogle Scholar
  50. Peixoto LAW, Dutra GM, Wosiacki WB (2015) The electric glass knifefishes of the Eigenmannia trilineata species-group (Gymnotiformes: Sternopygidae): monophyly and description of seven new species. Zool J Linn Soc 175:384–414CrossRefGoogle Scholar
  51. Scheich H (1977) Neural basis of communication in the high frequency electric fish, Eigenmannia virescens (jamming avoidance response). I. Open loop experiments and the time domain concept of signal analysis. J Comp Physiol A 113:181–206CrossRefGoogle Scholar
  52. Triques ML (1993) Filogenia dos gêneros de Gymnotiformes (Actino-pterygii, Ostariophysi), com base em caracteres esqueléticos. Comun Mus Ciênc PUCRS, série zool, Porto Alegre 6:85–130Google Scholar
  53. Triques ML (1996) Eigenmannia vicentespelaea, a new species of cave dwelling electrogenic Neotropical fish (Ostariophysi: Gymnotiformes: Sternopygidae). Rev française Aquariol 23:1–4Google Scholar
  54. Triques ML (2007) Parapteronotus bonapartii (Castelnau), considerado sinônimo sênior de Parapteronotus hasemani (Ellis) (Teleostei, Apteronotidae). Revista Brasileira de Zoologia 24:84–86CrossRefGoogle Scholar
  55. von der Emde G (1990) Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J Comp Physiol A 167:413–421CrossRefGoogle Scholar
  56. Waltz BT, Albert JS (2018) New species of glass knifefish Eigenmannia loretana (Gymnotiformes: Sternopygidae) from the Western Amazon. Zootaxa 4399:399–411CrossRefPubMedGoogle Scholar
  57. Watanabe A, Takeda K (1963) The change of discharge frequency by a.c. stimulus in a weak electric fish. J Exp Biol 40:57–66Google Scholar

Copyright information

© Japan Ethological Society and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zoological InstituteUniversity of RegensburgRegensburgGermany

Personalised recommendations