Journal of Ethology

, Volume 33, Issue 2, pp 125–136 | Cite as

Risky behaviors by the host could favor araneophagy of the spitting spider Scytodes globula on the hacklemesh weaver Metaltella simoni

  • Ignacio Escalante
  • Anita Aisenberg
  • Fernando G. Costa
Article

Abstract

Versatile predatory tactics might favor success during intra-guild predation. In the case of spiders, the preditory spitting spiders (Scytodidae) invade webs and feed on certain weaver spiders. Based on preliminary observations of Scytodes globula, we tested if this spider species as predator could feed on the sympatric hacklemesh weaver Metaltella simoni (Amphinectidae) as host, or if the host spider could prevent the attack. We exposed adult females of M. simoni on 2-week-old webs to adult female spitting spiders. The spitting spider preyed on the host spider in 28 % of the 72 trials in which the two spider species interacted. Leaving the retreat, approaching the predator, and touching the invader apparently made the host spider vulnerable to predation in 55 % of those interactions; therefore, those were considered risky behaviors. To the contrary, the host spider had a success rate of 67 % of surviving predation by performing defensive behaviors (moving hind legs, performing defensive displays). In four trials, the invader performed a defensive spit to deter the attack of the host spider, which points to the versatility of this trait. We found no effect of body size ratio of the spiders on the outcome of the interactions. The host spider left the retreat after the spitting spider entered its web, suggesting that the spitting spider could be performing aggressive mimicry, but notion is supported by only indirect evidence and needs further exploration. In summary, behavioral interplay mediated the outcome of the interactions between the two coexisting predators assessed in our study.

Keywords

Amphinectidae Araneae Ethograms Predator–prey interaction Scytodidae Uruguay 

Supplementary material

Video S1: Behavioral interactions during laboratory trails in enclosed arenas (see Fig. 1) between the spitting spider Scytodes globula (Scytodidae) and the hacklemesh weaver Metaltella simoni (Amphinectidae). Three different outcomes (see Table 3) are presented (WMV 24947 kb)

References

  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophot Int 11:36–42Google Scholar
  2. Ades C, Ramires EN (2002) Asymmetry of leg use during prey handling in the spitting spider Scytodes globula (Scytodidae). J Insect Behav 15:563–570CrossRefGoogle Scholar
  3. Ades C, Ramires EN, Marcon MR (2010) Asymmetry and experience in the predatory probing behavior of spitting spiders Scytodes globula Nicolet, 1849 (Araneae, Scytodidae). Rev Bras Zoocien 12:91–94Google Scholar
  4. Aisenberg A, Toscano-Gadea CA, Ghione S (2011) Guía de arácnidos del Uruguay. Ediciones de la Fuga, MontevideoGoogle Scholar
  5. Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7:557–564CrossRefGoogle Scholar
  6. Barrantes G, Eberhard WG (2007) The evolution of prey-wrapping behaviour in spiders. J Nat Hist 41:1631–1658CrossRefGoogle Scholar
  7. Blamires SJ, Chao YC, Liao CP, Tso IM (2011) Multiple prey cues induce foraging flexibility in a trap-building predator. Anim Behav 81:955–961CrossRefGoogle Scholar
  8. Briceño RD, Eberhard WG (2012) Spiders avoid sticking to their webs: clever leg movements, branched drip-tip setae, and anti-adhesive surfaces. Naturwissenschaften 99:337–341CrossRefPubMedGoogle Scholar
  9. Carvalho LA, Souza ES, Willemart RH (2012) Behavioral analysis of the interaction between the spitting spider Scytodes globula (Araneae: Scytodidae) and the harvestmen Discocyrtus invalidus (Opiliones: Gonyleptidae). J Arachnol 40:332–337CrossRefGoogle Scholar
  10. Clements R, Li D (2005) Regulation and non-toxicity of the spit from the pale spitting spider Scytodes pallida (Araneae: Scytodidae). Ethology 111:311–321CrossRefGoogle Scholar
  11. Coelho L, Aisenberg A, Costa FG (2010) Testing female receptiveness to novel or previous mating partners in a wolf spider. Behavior 147:383–395CrossRefGoogle Scholar
  12. Costa FG, Simó M (2014) Fenología de las arañas epígeas de una zona costera del sur de Uruguay: un estudio bianual con trampas de caída. Bol Soc Zool Uruguay 23(1):1–15Google Scholar
  13. Costa FG, Simó M, Aisenberg A (2006) Composición y ecología de la fauna epígea de Marindia (Canelones, Uruguay) con especial énfasis en las arañas: un estudio de dos años con trampas de intercepción. In: Menafra R, Rodríguez-Gallego L, Scarabino F, Conde D (eds) Bases para la conservación y el manejo de la costa uruguaya. Vida Silvestre Uruguay, Montevideo, pp 427–436Google Scholar
  14. Denno RF, Mitter MS, Langellotto GA, Gratton C, Finke DL (2004) Interactions between a hunting spider and a web-builder: consequences of intraguild predation and cannibalism for prey suppression. Ecol Entomol 29:566–577CrossRefGoogle Scholar
  15. Escalante I (2013) Ontogenetic and sexual differences in exploration and web construction in the spider Physocyclus globosus (Araneae: Pholcidae). Arachnology 16:61–68CrossRefGoogle Scholar
  16. Gilbert C, Rayor RS (1985) Predatory behavior of spitting spiders (Araneae: Scytodidae) and the evolution of prey wrapping. J Arachnol 13:231–241Google Scholar
  17. Gonzaga MO, Santos AJ, Dutra GF (1998) Web invasion and araneophagy by Peucetia tranquillini Mello-Leitão, 1992 (Araneae, Oxyopidae). J Arachnol 26:249–250Google Scholar
  18. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1). Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  19. Henschel JR, Jocqué R (1994) Bauble spiders: a new species of Achaearanea (Araneae: Theridiidae) with ingenious spiral retreats. J Nat Hist 28:1287–1295CrossRefGoogle Scholar
  20. Herberstein ME, Wignall A (2011) Deceptive signals in spiders. In: Herberstein ME (ed) Spider behavior flexibility and versatility. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Hronsky M (2006) Magnetic resonance study of the spider Nephila edulis and its liquid dragline silk. PhD and Habilitation thesis. Swiss Federal Institute of Technology, Zurich. doi:10.3929/ethz-a-005299740
  22. Ingram T, Svanba R, Kraft NJB, Kratina P, Southcott L, Schluter D (2012) Intraguild predation drives evolutionary niche shift in threespine stickleback. Evolution 66:1819–1832CrossRefPubMedGoogle Scholar
  23. Jackson RR (1992) Eight-legged tricksters. Spiders that specialize in catching other spiders. Bioscience 42:590–598CrossRefGoogle Scholar
  24. Jackson RR, Brassington RJ (1987) The biology of Pholcus phalangioides (Araneae, Pholcidae): predatory versatility, araneophagy and aggressive mimicry. J Zool 211:227–238CrossRefGoogle Scholar
  25. Jackson RR, Pollard SD (1996) Predatory behavior of jumping spiders. Annu Rev Entomol 41:287–308CrossRefPubMedGoogle Scholar
  26. Jackson RR, Whitehouse MEA (1986) The biology of New Zealand and Queensland pirate spiders (Araneae: Mimetidae): aggressive mimicry, araneophagy and prey specialization. J Zool 210:279–303CrossRefGoogle Scholar
  27. Jackson RR, Wilcox RS (1990) Aggressive mimicry, prey-specific predatory behaviour and predator recognition in the predator- prey interactions of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Behav Ecol Sociobiol 26:111–119CrossRefGoogle Scholar
  28. Jackson RR, Li D, Fijn N, Barrion AT (1998) Predator-prey interaction between aggressive-mimic jumping spiders (Salticidae) and araneophagic spitting spiders (Scytodidae) from the Philippines. J Insect Behav 11:319–342CrossRefGoogle Scholar
  29. Jackson RR, Pollard SD, Li D, Fijn N (2002) Interpopulation variation in the risk related decisions of Portia labiata, an araneophagic jumping spider (Araneae, Salticidae), during predatory sequences with spitting spiders. Anim Cogn 5:215–223CrossRefPubMedGoogle Scholar
  30. Jarmar EAR, Jackson RR (1986) The biology of Taieria erebus (Araneae, Gnaphosidae), an araneophagic spider from New Zealand: Silk utilisation and predatory versatility. N Z J Zool 13:521–541CrossRefGoogle Scholar
  31. Konigswald A, Lubin Y, Ward D (1990) The effectiveness of the nest of a desert widow spider, Latrodectus revivensis, in predatory deterrence. Psyche 97:75–80CrossRefGoogle Scholar
  32. Landolfa MA, Barth FG (1996) Vibrations in the orb web of the spider Nephila clavipes: cues for discrimination and orientation. J Comp Physiol A 179:493–508CrossRefGoogle Scholar
  33. Li D (1996) Prey preference of specialized jumping spiders (Araneae: Salticidae). PhD thesis. University of Canterbury. ChristchurchGoogle Scholar
  34. Li D, Jackson RR, Barrion AT (1999) Parental and predatory behaviour of Scytodes sp., an araneophagic spitting spider (Araneae: Scytodidae) from the Philippines. J Zool 247:293–310CrossRefGoogle Scholar
  35. Masters WM, Markl HS, Moffat AJM (1986) Transmission of vibration in a spider’s web. In: Shear WA (ed) Spiders: webs, behavior and evolution. Stanford University Press, Stanford, pp 49–69Google Scholar
  36. Nelson X, Jackson RR (2011) Flexibility in the foraging strategies of spiders. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 31–56CrossRefGoogle Scholar
  37. Nelson X, Jackson RR (2012) The role of numerical competence in a specialized predatory strategy of an araneophagic spider. Anim Cogn 15:699–710CrossRefPubMedGoogle Scholar
  38. Nentwig W (1985) Feeding ecology of the tropical spitting spider Scytodes longipes (Araneae, Scytodidae). Oecologia 65:284–288CrossRefGoogle Scholar
  39. Opell BD (2013) Cribellar thread. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 303–315CrossRefGoogle Scholar
  40. Perkins TA, Riechert SE, Jones TC (2007) Interactions between the social spider Anelosimus studiosus (Araneae, Theridiidae) and foreign spiders that frequent its nests. J Arachnol 35:143–152CrossRefGoogle Scholar
  41. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330CrossRefGoogle Scholar
  42. Ramires EN (1999) Uma abordagem comparativa ao comportamento defensivo, agonístico e locomotor de três espécies de aranhas do gênero Loxosceles (Sicariidae). PhD thesis. Instituto de Psicología, Universidad de São Paulo, São PauloGoogle Scholar
  43. Riechert SE, Hedrick AV (1990) Levels of predation and genetically based anti-predator behaviour in the spider, Agelenopsis aperta. Anim Behav 40:679–687CrossRefGoogle Scholar
  44. Rojas A (2011) Sheet-web construction by Melpomene sp. (Araneae: Agelenidae). J Arachnol 39:189–193CrossRefGoogle Scholar
  45. Simó M, Laborda Á, Jorge C, Guerrero JC, Alves Dias M, Castro M (2011) Introduction, distribution and habitats of the invasive spider Badumna longinqua (L. Koch, 1867) (Araneae: Desidae) in Uruguay, with notes on its world dispersion. J Nat Hist 45:1637–1648CrossRefGoogle Scholar
  46. Soley F, Taylor PW (2012) Araneophagic assassin bugs choose routes that minimize risk of detection by web–building spider. Anim Behav 84:315–321CrossRefGoogle Scholar
  47. Suter RB, Stratton GE (2009) Spitting performance parameters and their biomechanical implications in the spitting spider, Scytodes thoracica. J Insect Sci 9:1–15CrossRefPubMedGoogle Scholar
  48. Vetter RS (2013) Scavenging behavior in spitting spiders, Scytodes (Araneae: Scytodidae). J Arachnol 41:392–394CrossRefGoogle Scholar
  49. Whitehouse MEA (1987) “Spider eat spider”: the predatory behavior of Rhomphaea sp. from New Zealand. J Arachnol 15:355–362Google Scholar
  50. Whitehouse MEA, Agnarsson I, Miyashita T, Smith D, Cangialosi K, Masumoto T, Li D, Henaut Y (2002) Argyrodes: Phylogeny, sociality and interspecific interactions–a report on the Argyrodes symposium, Badplass 2001. J Arachnol 30:238–245CrossRefGoogle Scholar
  51. Wise DH (1993) Spiders in ecological webs. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  52. Yasuda H, Kikuchi T, Kindlmann P, Sato S (2001) Relationships between attack and escape rates, cannibalism, and intraguild predation in larvae of two predatory ladybirds. J Insect Behav 14:373–384CrossRefGoogle Scholar

Copyright information

© Japan Ethological Society and Springer Japan 2015

Authors and Affiliations

  • Ignacio Escalante
    • 1
    • 3
  • Anita Aisenberg
    • 2
  • Fernando G. Costa
    • 2
  1. 1.Escuela de Biología, Ciudad Universitaria Rodrigo FacioUniversidad de Costa RicaSan JoséCosta Rica
  2. 2.Laboratorio de Etología, Ecología y EvoluciónInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  3. 3.Department of Environmental Sciences, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations