Journal of Ethology

, Volume 30, Issue 1, pp 187–190 | Cite as

The implications of turning behaviour performed by Amazonian manatees after release into the wild

  • Mumi KikuchiEmail author
  • Vera M. F. da Silva
  • Fernando C. W. Rosas
  • Diogo Souza
  • Nobuyuki Miyazaki
Short Communication


Sirenians have dichromatic colour vision and tactile hairs but have not developed underwater echolocation. Amazonian manatees (Trichechus inunguis) live in turbid water and it has been unclear how they understand their surroundings. In this study, we recorded the 3D movements of two captive-raised Amazonian manatees. The results revealed that the manatees always swam in a circular pattern. Both animals used slower, narrower turning motions as they approached the flooded forests, which is abundant in aquatic vegetation. Therefore, we suggest that these two manatees swam in a circular pattern to detect all directions of their surroundings especially using sensitive facial bristles.


Diving behaviour 3D-movements Trichechus inunguis 



We thank INPA staff and students, Shinichi Watanabe, Katsufumi Sato and Ichiro Aoki for their discussions and comments. This work was funded by the program “Bio-logging Science of the University of Tokyo (UTBLS)” led by N. Miyazaki and Sasagawa Scientific Research Grant, Japan Science Society, 2009.


  1. Akamatsu T, Wang D, Wang K, Li S, Dong S (2010) Scanning sonar of rolling porpoises during prey capture dives. J Exp Biol 213:146–152PubMedCrossRefGoogle Scholar
  2. Bachteler D, Dehnhardt G (1999) Active touch performance in the Antillean manatee: evidence for a functional differentiation of facial tactile hairs. Zoology 102:61–69Google Scholar
  3. Bauer GB, Colbert DE, Gaspard JC III, Littlefield B (2003) Underwater visual acuity of Florida manatees (Trichechus manatus latirostris). Int J Comp Psychol 16:130–142Google Scholar
  4. Bengtson JL, Fitzgerald SM (1985) Potential role of vocalizations in West Indian manatees. J Mammal 66:816–819CrossRefGoogle Scholar
  5. Cohen JL, Tucker GS, Odell DK (1982) The photoreceptors of the West Indian manatee. J Morphol 173:197–202PubMedCrossRefGoogle Scholar
  6. Gerstein ER, Gerstein L, Forsythe SE, Blue JE (1999) The underwater audiogram of the West Indian manatee (Trichechus manatus). J Acoust Soc Am 105:3575–3583PubMedCrossRefGoogle Scholar
  7. Griebel U, Schmid A (1996) Color vision in the manatee (Trichechus manatus). Vision Res 36:2747–2757PubMedCrossRefGoogle Scholar
  8. Hartman DS (1979) Ecology and behavior of the manatee (Trichechus manatus) in Florida. Am Soc Mammal Spec Publ 5Google Scholar
  9. Marshall CD, Clark LA, Reep RL (1998) The muscular hydrostat of the Florida manatee (Trichechus manatus latirostris): a functional morphological model of perioral bristle use. Mar Mammal Sci 14:290–303CrossRefGoogle Scholar
  10. Marshall CD, Maeda H, Iwata M, Furuta M, Asano S, Rosas F, Reep RL (2003) Orofacial morphology and feeding behaviour of the dugong, Amazonian, West African and Antillean manatees (Mammalia: Sirenia): functional morphology of the muscular–vibrissal complex. J Zool 259:245–260CrossRefGoogle Scholar
  11. Montgomery GG, Best RC, Yamakoshi M (1981) A radio-tracking study of the Amazonian manatee Trichechus inunguis (Mammalia, Sirenia). Biotropica 13:81–85CrossRefGoogle Scholar
  12. Narazaki T, Shiomi K (2010) Reconstruction of 3-D path (ThreeD_path).
  13. O’Shea TJ, Poche LB (2006) Aspects of underwater sound communication in Florida manatees (Trichechus manatus latirostris). J Mammal 87:1061–1071CrossRefGoogle Scholar
  14. Reep RL, Bonde RK (2006) The Florida manatee biology and conservation. University Press of Florida, GainesvilleGoogle Scholar
  15. Reep RL, Johnson JI, Switzer RC, Welker WI (1989) Manatee cerebral cortex: cytoarchitecture of the frontal region in (Trichechus manatus latirostris). Brain Behav Evol 34:365–386PubMedCrossRefGoogle Scholar
  16. Reep RL, Marshall CD, Stoll ML, Whitaker DM (1998) Distribution and innervation of facial bristles and hairs in the Florida manatee (Trichechus manatus latirostris). Mar Mammal Sci 14:257–273CrossRefGoogle Scholar
  17. Reep RL, Stoll ML, Marshall CD, Homer BL, Samuelson DA (2001) Microanatomy of facial vibrissae in the Florida manatee: the basis for specialized sensory function and oripulation. Brain Behav Evol 58:1–14PubMedCrossRefGoogle Scholar
  18. Reep RL, Marshall CD, Stoll ML (2002) Tactile hairs on the postcranial body in Florida manatees: a mammalian lateral line? Brain Behav Evol 59:141–154PubMedCrossRefGoogle Scholar
  19. Reynolds JE (1981) Aspects of the social behavior and herd structure of a semi isolated colony of West Indian manatees, Trichechus manatus. Mammalia 45:431–451CrossRefGoogle Scholar
  20. Sakamoto KQ, Sato K, Ishizuka M, Watanuki Y, Takahashi A, Daunt F, Wanless S (2009) Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS One 4:e5379PubMedCrossRefGoogle Scholar
  21. Shiomi K, Narazaki T, Sato K, Shimatani K, Arai N, Ponganis PJ, Miyazaki N (2010) Data-processing artefacts in three-dimensional dive path reconstruction from geomagnetic and acceleration data. Aquat Biol 8:299–304CrossRefGoogle Scholar
  22. Sousa-Lima RS, Paglia AP, Da Fonseca GAB (2002) Signature information and individual recognition in the isolation calls of Amazonian manatees, Trichechus inunguis (Mammalia: Sirenia). Anim Behav 63:301–310CrossRefGoogle Scholar

Copyright information

© Japan Ethological Society and Springer 2011

Authors and Affiliations

  • Mumi Kikuchi
    • 1
    Email author
  • Vera M. F. da Silva
    • 2
  • Fernando C. W. Rosas
    • 2
  • Diogo Souza
    • 2
  • Nobuyuki Miyazaki
    • 3
  1. 1.Laboratory of Fisheries Biology, Graduate School of Agricultural and Life ScienceUniversity of TokyoTokyoJapan
  2. 2.Aquatic Mammals Laboratory (LMA)National Institute of Amazonian Research (INPA)ManausBrazil
  3. 3.Ocean Policy Research Foundation (OPRF)TokyoJapan

Personalised recommendations