Journal of Ethology

, Volume 25, Issue 3, pp 263–270 | Cite as

Consistent social structure within aggregations of the Australian lizard, Egernia stokesii across seven disconnected rocky outcrops

  • M. G. Gardner
  • C. M. Bull
  • A. Fenner
  • K. Murray
  • S. C. Donnellan


The Australian skink lizard Egernia stokesii lives in aggregations of up to 17 individuals. Previously, at one site, these aggregations have been shown to comprise paired unrelated individuals and several cohorts of their young. To investigate whether social structuring in this species is a response to ecological conditions or is phylogenetically constrained, we sampled social aggregations of E. stokesii from seven geographically adjacent rocky outcrops (including the site previously studied) that differ in the availability of homesite crevices. Analysis of genotypes from ten microsatellite loci indicate that social structures were similar at all sites and were comparable with that of the previous study. Over all sites highly significant positive relationships were observed between the number of crevices at a site and both the number of lizards and the number of social groups. Social structure in this species seems to be phylogenetically constrained, at least in relation to the abundance of potential homesite crevices.


Phylogenetic constraint Microsatellites Skinks Sociality Egernia stokesii Groups Crevice refuges 


  1. Alberts AC, Lemm JM, Perry AM, Morici LA, Phillips JA (2002) Temporary alteration of local social structure in a threatened population of Cuban iguanas (Cyclura nubila). Behav Ecol Sociobiol 51:324–335CrossRefGoogle Scholar
  2. Baird TA, Sloan CL (2003) Interpopulation variation in the social organization of female collared lizards, Crotaphytus collaris. Ethology 109:879–894CrossRefGoogle Scholar
  3. Barton NH, Slatkin M (1986) A quasi-equlibrium theory of the distribution of rare allleles in a subdivided population. Heredity 56:409–415PubMedGoogle Scholar
  4. Bonnet E, Van de Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Stat Software 7:1–12Google Scholar
  5. Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455PubMedCrossRefGoogle Scholar
  6. Bull CM, Griffin CL, Bonnett M, Gardner MG, Cooper SJB (2001) Discrimination between related and unrelated individuals in the Australian lizard Egernia striolata. Behav Ecol Sociobiol 50:173–179CrossRefGoogle Scholar
  7. Chapple DG (2003) Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol Monogr 17:145–180CrossRefGoogle Scholar
  8. Chapple DG, Keogh JS (2005) Complex mating system and dispersal patterns in a social lizard, Egernia whitii. Mol Ecol 14:1215–1227PubMedCrossRefGoogle Scholar
  9. Cogger H (1992) Reptiles and Amphibians of Australia, Cornell University Press. Ithaca NYGoogle Scholar
  10. Cooper SJB, Bull CM, Gardner MG (1997) Characterization of microsatellite loci from the socially monogamous lizard Tiliqua rugosa using a PCR-based isolation technique. Mol Ecol 6:793–795PubMedCrossRefGoogle Scholar
  11. Duffield GA, Bull CM (1998) Seasonal and ontogenetic changes in the diet of the Australian skink, Egernia stokesii. Herpetologica 54:414–419Google Scholar
  12. Duffield GA, Bull CM (2002a) Stable social aggregations in an Australian lizard, Egernia stokesii. Naturwissenschaften 89:424–427CrossRefGoogle Scholar
  13. Duffield GA, Bull CM (2002b) Egernia stokesii (Gidgee skink). Opportunistic dispersal. Herp Rev 33:204–205Google Scholar
  14. Fox SF, McCoy JK, Baird TA (2003) Lizard Social Behavior. Johns Hopkins University Press Baltimore, MDGoogle Scholar
  15. Fulgione D, Rippa D, De Luca A, Milone M (2003) Genetic and behavioural analysis in three typical colonies of Jackdaws (Corvus monedula). Ethol Ecol Evol 15:183–189CrossRefGoogle Scholar
  16. Fuller SJ, Bull CM, Murray K, Spencer RJ (2005) Clustering of related individuals in a population of the Australian lizard, Egernia frerei. Mol Ecol 14:1207–1213PubMedCrossRefGoogle Scholar
  17. Gardner MG (2000) A genetic investigation of sociality in the Australian group living lizard, Egernia stokesii. PhD Thesis, Flinders UniversityGoogle Scholar
  18. Gardner MG, Bull CM, Cooper SJB (2002) High levels of genetic monogamy in the group-living Australian lizard Egernia stokesii. Mol Ecol 11:1787–1794PubMedCrossRefGoogle Scholar
  19. Gardner MG, Bull CM, Cooper SJB, Duffield GA (2000) Microsatellite mutations in litters of the Australian lizard Egernia stokesii. J Evol Biol 13:551–560CrossRefGoogle Scholar
  20. Gardner MG, Bull CM, Cooper SJB, Duffield GA (2001) Genetic evidence for a family structure in stable social aggregations of the Australian lizard Egernia stokesii. Mol Ecol 10:175–183PubMedCrossRefGoogle Scholar
  21. Gardner MG, Cooper SJB, Bull CM, Grant WN (1999) Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure. J Hered 90:301–304CrossRefGoogle Scholar
  22. Godfrey SS, Bull CM, Murray K, Gardner MG (2006) Transmission mode and distribution of parasites among groups of the social lizard Egernia stokesii. Parasitol Res 99:223–230PubMedCrossRefGoogle Scholar
  23. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  24. Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–803CrossRefGoogle Scholar
  25. Jones AG, Walker D, Lindstrom K, Kvarnemo C, Avise JC (2001) Surprising similarity of sneaking rates and genetic mating patterns in two populations of sand goby experiencing disparate sexual selection regimes. Mol Ecol 10:461–469PubMedCrossRefGoogle Scholar
  26. Korol A, Rashkovetsky E, Iliadi K, Michalak P, Ronin Y, Nevo E (2000) Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at Evolution Canyon. Proc Natl Acad Sci USA 97:12637–12642PubMedCrossRefGoogle Scholar
  27. Lanham EJ (2001) Group-living in the Australian skink, Egernia stokesii. PhD thesis, Flinders UniversityGoogle Scholar
  28. O’Connor D, Shine R (2003) Lizards in nuclear families: a novel reptilian social system in Egernia saxatilis (Scincidae). Mol Ecol 12:743–752PubMedCrossRefGoogle Scholar
  29. Pearson D, Shine R, Williams A (2002) Geographic variation in sexual size dimorphism within a single snake species (Morelia spilota, Pythonidae). Oecologia 131:418–426CrossRefGoogle Scholar
  30. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefGoogle Scholar
  31. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  32. Richards MH (2000) Evidence for geographic variation in colony social organization in an obligately social sweat bee, Lasioglossum malachurum Kirby (Hymenoptera; Halictidae). Can J Zool 78:1259–1266CrossRefGoogle Scholar
  33. Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62CrossRefGoogle Scholar
  34. Shine R, Fitzgerald M (1995) Variation in mating systems and sexual size dimorphism between populations of the Australian python Morelia spilota (Serpentes, Pythonidae). Oecologia 103:490–498CrossRefGoogle Scholar
  35. Smith L, Burgoyne L (2004) Collecting, archiving and processing DNA from wildlife samples using FTA(R) databasing paper. BMC Ecol 4:4Google Scholar
  36. Smith TB, Calsbeek R, Wayne RK, Holder KH, Pires D, Bardeleben C (2005) Testing alternative mechanisms of evolutionary divergence in an African rain forest passerine bird. J Evol Biol 18:257–268PubMedCrossRefGoogle Scholar
  37. Stein J (1999) An ecological study of the blood parasites of the Australian skink, Egernia stokesii. PhD Thesis, Flinders UniversityGoogle Scholar
  38. Stow AJ (2002) Microsatellite loci from the Cunningham’s skink (Egernia cunninghami). Mol Ecol Notes 2:256–257CrossRefGoogle Scholar
  39. Stow AJ, Sunnucks P (2004) High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat. Mol Ecol 13:419–430PubMedCrossRefGoogle Scholar
  40. Stow AJ, Sunnucks P, Briscoe DA, Gardner MG (2001) The impact of habitat fragmentation on dispersal of Cunningham’s skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites. Mol Ecol 10:867–878PubMedCrossRefGoogle Scholar
  41. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  42. Waterman JM, Fenton MB (2000) The effect of drought on the social structure and use of space in Cape ground squirrels, Xerus inauris. Ecoscience 7:131–136Google Scholar
  43. Yeager CP (1995) Does intraspecific variation in social-systems explain reported differences in the social-structure of the proboscis monkey (Nasalis larvatus)? Primates 36:575–582CrossRefGoogle Scholar

Copyright information

© Japan Ethological Society and Springer 2006

Authors and Affiliations

  • M. G. Gardner
    • 1
  • C. M. Bull
    • 1
  • A. Fenner
    • 1
  • K. Murray
    • 1
  • S. C. Donnellan
    • 2
  1. 1.School of Biological SciencesFlinders UniversityAdelaideAustralia
  2. 2.South Australian Museum Adelaide, and Centre for Evolutionary Biology and BiodiversityUniversity of AdelaideAdelaideAustralia

Personalised recommendations