Skip to main content
Log in

Electric vehicle batteries waste management and recycling challenges: a comprehensive review of green technologies and future prospects

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Electric vehicle (EV) batteries have lower environmental impacts than traditional internal combustion engines. However, their disposal poses significant environmental concerns due to the presence of toxic materials. Although safer than lead-acid batteries, nickel metal hydride and lithium-ion batteries still present risks to health and the environment. This study reviews the environmental and social concerns surrounding EV batteries and their waste. It explores the potential threats of these batteries to human health and the environment. It also discusses alternative methods to enhance EV-battery performance, safety, and sustainability, such as hybrid systems of green technologies and innovative recycling processes. Finding alternative materials for EV batteries is crucial to addressing current resource shortage risks and improving EV performance and sustainability. Therefore, the development of efficient and sustainable solutions for the safe handling of retired EV batteries is necessary to ensure carbon neutrality and mitigate environmental and health risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AC:

Alternating current

Ar:

Argon

BEV:

Battery electric vehicle

Co:

Cobalt

DC:

Direct current

DES:

Deep eutectic solvent

DOE:

Department of Energy

DOT:

Department of Transportation

EBRA:

European Battery Recycling Organization

EP:

Eutrophication potential

EPR:

Extended producer responsibilities

ERMA:

European Raw Materials Alliance

EU:

European Union

EV:

Electric vehicle

GHG:

Greenhouse gas

HBA:

Hydrogen bond acceptor

HBD:

Hydrogen bond donor

HMR:

Hazardous Materials Regulation

HTP:

Human toxicity potential

IL:

Ionic liquid

LCA:

Life cycle assessment

Li:

Lithium

LFP:

Lithium iron phosphate

LiB:

Lithium-ion battery

Ni:

Nickel

NiMH:

Nickle metal hydride

PHEV:

Plug-in hybrid electric vehicle

PVDF:

Polyvinylidene fluoride

RCRA:

Resource Conservation and Recovery Act

SCO2 :

Supercritical CO2

SET Plan:

Strategy Energy Technology Plan

References

  1. Karagoz S, Aydin N, Simic V (2020) End-of-life vehicle management: a comprehensive review. J Mater Cycles Waste Manag 22:416–442. https://doi.org/10.1007/s10163-019-00945-y

    Article  Google Scholar 

  2. IEA (2022) Global EV Outlook 2022 - Securing supplies for an electric future (https://www.iea.org/)

  3. Xin S, Zhang X, Wang L et al (2024) Roadmap for rechargeable batteries: present and beyond. Sci China Chem 67:13–42. https://doi.org/10.1007/s11426-023-1908-9

    Article  Google Scholar 

  4. Papadis E, Tsatsaronis G (2020) Challenges in the decarbonization of the energy sector. Energy. https://doi.org/10.1016/j.energy.2020.118025

    Article  Google Scholar 

  5. Wu C, Huang H, Lu W et al (2020) Mg doped Li–LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries. Adv Sci. https://doi.org/10.1002/advs.201902643

    Article  Google Scholar 

  6. Xie J, Lu YC (2020) A retrospective on lithium-ion batteries. Nat Commun 11:9–12. https://doi.org/10.1038/s41467-020-16259-9

    Article  Google Scholar 

  7. Maisel F, Neef C, Marscheider-Weidemann F, Nissen NF (2023) A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. Resour, Conserv Recycl. https://doi.org/10.1016/j.resconrec.2023.106920

    Article  Google Scholar 

  8. Yan H, Zhang D, Duo X, Sheng X (2021) A review of spinel lithium titanate (Li4Ti5O12) as electrode material for advanced energy storage devices. Ceram Int 47:5870–5895. https://doi.org/10.1016/j.ceramint.2020.10.241

    Article  Google Scholar 

  9. Qiao Q, Zhao F, Liu Z et al (2017) Comparative study on life cycle CO2 emissions from the production of electric and conventional vehicles in China. Energy Procedia 105:3584–3595. https://doi.org/10.1016/j.egypro.2017.03.827

    Article  Google Scholar 

  10. Xia X, Li P (2022) A review of the life cycle assessment of electric vehicles: considering the influence of batteries. Sci Total Environ 814:152870. https://doi.org/10.1016/j.scitotenv.2021.152870

    Article  Google Scholar 

  11. Sakunai T, Ito L, Tokai A (2021) Environmental impact assessment on production and material supply stages of lithium-ion batteries with increasing demands for electric vehicles. J Mater Cycles Waste Manag 23:470–479. https://doi.org/10.1007/s10163-020-01166-4

    Article  Google Scholar 

  12. Del Duce A, Gauch M, Althaus HJ (2016) Electric passenger car transport and passenger car life cycle inventories in ecoinvent version 3. Int J Life Cycle Assess 21:1314–1326. https://doi.org/10.1007/s11367-014-0792-4

    Article  Google Scholar 

  13. Sisani F, Di Maria F, Cesari D (2022) Environmental and human health impact of different powertrain passenger cars in a life cycle perspective. A focus on health risk and oxidative potential of particulate matter components. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.150171

    Article  Google Scholar 

  14. Del PF, Delogu M, Pierini M (2018) Life cycle assessment in the automotive sector: a comparative case study of Internal Combustion Engine (ICE) and electric car. Procedia Structur Integr 12:521–537. https://doi.org/10.1016/j.prostr.2018.11.066

    Article  Google Scholar 

  15. Schomberg AC, Bringezu S, Flörke M (2021) Extended life cycle assessment reveals the spatially-explicit water scarcity footprint of a lithium-ion battery storage. Commun Earth Environ. https://doi.org/10.1038/s43247-020-00080-9

    Article  Google Scholar 

  16. Sun X, Hao H, Hartmann P et al (2019) Supply risks of lithium-ion battery materials: an entire supply chain estimation. Mater Today Energy. https://doi.org/10.1016/j.mtener.2019.100347

    Article  Google Scholar 

  17. Rajaeifar MA, Ghadimi P, Raugei M et al (2022) Challenges and recent developments in supply and value chains of electric vehicle batteries: a sustainability perspective. Resour Conserv Recycl 180:106144. https://doi.org/10.1016/j.resconrec.2021.106144

    Article  Google Scholar 

  18. Olivetti EA, Ceder G, Gaustad GG, Fu X (2017) Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1:229–243. https://doi.org/10.1016/j.joule.2017.08.019

    Article  Google Scholar 

  19. Lai X, Chen Q, Tang X et al (2022) Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective. eTransportation. 12:100169. https://doi.org/10.1016/j.etran.2022.100169

    Article  Google Scholar 

  20. Harper G, Sommerville R, Kendrick E et al (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575:75. https://doi.org/10.1038/s41586-019-1682-5

    Article  Google Scholar 

  21. Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17:53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x

    Article  Google Scholar 

  22. Wang D, Zamel N, Jiao K et al (2013) Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China. Energy 59:402–412. https://doi.org/10.1016/j.energy.2013.07.035

    Article  Google Scholar 

  23. Yan X, Crookes RJ (2010) Energy demand and emissions from road transportation vehicles in China. Prog Energy Combust Sci 36:651–676. https://doi.org/10.1016/j.pecs.2010.02.003

    Article  Google Scholar 

  24. Nimesh V, Kumari R, Soni N et al (2021) Implication viability assessment of electric vehicles for different regions: an approach of life cycle assessment considering exergy analysis and battery degradation. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2021.114104

    Article  Google Scholar 

  25. Yu A, Wei Y, Chen W et al (2018) Life cycle environmental impacts and carbon emissions: a case study of electric and gasoline vehicles in China. Transp Res D Transp Environ 65:409–420. https://doi.org/10.1016/j.trd.2018.09.009

    Article  Google Scholar 

  26. Marmiroli B, Venditti M, Dotelli G, Spessa E (2020) The transport of goods in the urban environment: a comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles. Appl Energy. https://doi.org/10.1016/j.apenergy.2019.114236

    Article  Google Scholar 

  27. Noudeng V, Van QN, Xuan TD (2022) A future perspective on waste management of lithium-ion batteries for electric vehicles in Lao PDR: current status and challenges. Int J Environ Res Public Health 19:1–22. https://doi.org/10.3390/ijerph192316169

    Article  Google Scholar 

  28. Islam MT, Iyer-Raniga U (2022) Lithium-ion battery recycling in the circular economy: a review. Recycling. https://doi.org/10.3390/recycling7030033

    Article  Google Scholar 

  29. Kumar A, Huyn P, Vennelakanti R (2023) A digital solution framework for enabling electric vehicle battery circularity based on an ecosystem value optimization approach. npj Mater Sustain. https://doi.org/10.1038/s44296-023-00001-9

    Article  Google Scholar 

  30. Beghi M, Braghin F, Roveda L (2023) Enhancing disassembly practices for electric vehicle battery packs: a narrative comprehensive review. Designs (Basel) 7:109. https://doi.org/10.3390/designs7050109

    Article  Google Scholar 

  31. Costa CM, Barbosa JC, Gonçalves R et al (2021) Recycling and environmental issues of lithium-ion batteries: advances, challenges and opportunities. Energy Storage Mater 37:433–465. https://doi.org/10.1016/j.ensm.2021.02.032

    Article  Google Scholar 

  32. Sobianowska-Turek A, Urbańska W, Janicka A et al (2021) The necessity of recycling ofwaste li-ion batteries used in electric vehicles as objects posing a threat to human health and the environment. Recycling. https://doi.org/10.3390/recycling6020035

    Article  Google Scholar 

  33. Marchese D, Giosuè C, Staffolani A et al (2024) An overview of the sustainable recycling processes used for lithium-ion batteries. Batteries. https://doi.org/10.3390/batteries10010027

    Article  Google Scholar 

  34. Bhar M, Ghosh S, Krishnamurthy S et al (2023) A review on spent lithium-ion battery recycling: from collection to black mass recovery. RSC Sustain 1:1150–1167. https://doi.org/10.1039/d3su00086a

    Article  Google Scholar 

  35. Zhao Y, Pohl O, Bhatt AI et al (2021) A review on battery market trends, second-life reuse, and recycling. Sustain Chem 2:167–205. https://doi.org/10.3390/suschem2010011

    Article  Google Scholar 

  36. Mitsubishi Motors Corporation (2023) Resource recycling initiatives

  37. Kamath D, Shukla S, Arsenault R et al (2020) Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications. Waste Manage 113:497–507. https://doi.org/10.1016/j.wasman.2020.05.034

    Article  Google Scholar 

  38. Lai X, Huang Y, Gu H et al (2021) Turning waste into wealth: a systematic review on echelon utilization and material recycling of retired lithium-ion batteries. Energy Storage Mater 40:96–123. https://doi.org/10.1016/j.ensm.2021.05.010

    Article  Google Scholar 

  39. Cusenza MA, Guarino F, Longo S et al (2019) Reuse of electric vehicle batteries in buildings: an integrated load match analysis and life cycle assessment approach. Energy Build 186:339–354. https://doi.org/10.1016/j.enbuild.2019.01.032

    Article  Google Scholar 

  40. Dunn JB, Gaines L, Sullivan J, Wang MQ (2012) Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ Sci Technol 46:12704–12710. https://doi.org/10.1021/es302420z

    Article  Google Scholar 

  41. Hu Y, Cheng H, Tao S (2017) Retired electric vehicle (EV) batteries: integrated waste management and research needs. Environ Sci Technol 51:10927–10929. https://doi.org/10.1021/acs.est.7b04207

    Article  Google Scholar 

  42. Wu Z, Gao G, Wang Y (2019) Effects of soil properties, heavy metals, and PBDEs on microbial community of e-waste contaminated soil. Ecotoxicol Environ Saf 180:705–714. https://doi.org/10.1016/j.ecoenv.2019.05.027

    Article  Google Scholar 

  43. Rodrigues dos Santos F, de Almeida E, da Cunha Kemerich PD, Melquiades FL (2017) Evaluation of metal release from battery and electronic components in soil using SR-TXRF and EDXRF. X-Ray Spectrom 46:512–521. https://doi.org/10.1002/xrs.2784

    Article  Google Scholar 

  44. Chan KH, Anawati J, Malik M, Azimi G (2021) Closed-loop recycling of lithium, cobalt, nickel, and manganese from waste lithium-ion batteries of electric vehicles. ACS Sustain Chem Eng 9:4398–4410. https://doi.org/10.1021/acssuschemeng.0c06869

    Article  Google Scholar 

  45. Christensen PA, Anderson PA, Harper GDJ et al (2021) Risk management over the life cycle of lithium-ion batteries in electric vehicles. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2021.111240

    Article  Google Scholar 

  46. Zheng X, Zhu Z, Lin X et al (2018) A mini-review on metal recycling from spent lithium ion batteries. Engineering 4:361–370. https://doi.org/10.1016/j.eng.2018.05.018

    Article  Google Scholar 

  47. Yang H, Zhuang GV, Ross PN (2006) Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J Power Sources 161:573–579. https://doi.org/10.1016/j.jpowsour.2006.03.058

    Article  Google Scholar 

  48. Kotak Y, Marchante Fernández C, Canals Casals L et al (2021) End of electric vehicle batteries: reuse vs recycle. Energies (Basel) 14:2217. https://doi.org/10.3390/en14082217

    Article  Google Scholar 

  49. White C, Thompson B, Swan LG (2020) Repurposed electric vehicle battery performance in second-life electricity grid frequency regulation service. J Energy Storage. https://doi.org/10.1016/j.est.2020.101278

    Article  Google Scholar 

  50. Iqbal H, Sarwar S, Kirli D et al (2023) A survey of second-life batteries based on techno-economic perspective and applications-based analysis. Carbon Neutrality. https://doi.org/10.1007/s43979-023-00049-5

    Article  Google Scholar 

  51. Hua Y, Liu X, Zhou S et al (2021) Toward sustainable reuse of retired lithium-ion batteries from electric vehicles. Resour Conserv Recycl 168:105249. https://doi.org/10.1016/j.resconrec.2020.105249

    Article  Google Scholar 

  52. Lee JW, Haram MHSM, Ramasamy G et al (2021) Technical feasibility and economics of repurposed electric vehicles batteries for power peak shaving. J Energy Storage 40:102752. https://doi.org/10.1016/j.est.2021.102752

    Article  Google Scholar 

  53. Hossain E, Murtaugh D, Mody J et al (2019) A comprehensive review on second-life batteries: current state, manufacturing considerations, applications, impacts, barriers potential solutions, business strategies, and policies. IEEE Access 7:73215–73252. https://doi.org/10.1109/ACCESS.2019.2917859

    Article  Google Scholar 

  54. Ahmadi L, Young SB, Fowler M et al (2017) A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int J Life Cycle Assess 22:111–124. https://doi.org/10.1007/s11367-015-0959-7

    Article  Google Scholar 

  55. Bobba S, Mathieux F, Ardente F et al (2018) Life cycle assessment of repurposed electric vehicle batteries: an adapted method based on modelling energy flows. J Energy Storage 19:213–225. https://doi.org/10.1016/j.est.2018.07.008

    Article  Google Scholar 

  56. Ioakimidis CS, Murillo-Marrodán A, Bagheri A et al (2019) Life cycle assessment of a lithium iron phosphate (LFP) electric vehicle battery in second life application scenarios. Sustainability (Switzerland). https://doi.org/10.3390/su11092527

    Article  Google Scholar 

  57. Wang L, Zhu H, Bi H et al (2024) Efficient recovery of electrode materials from lithium iron phosphate batteries through heat treatment, ball milling, and foam flotation. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-024-01919-5

    Article  Google Scholar 

  58. Al-Asheh S, Aidan A, Allawi T et al (2024) Treatment and recycling of spent lithium-based batteries: a review. J Mater Cycles Waste Manag 26:76–95. https://doi.org/10.1007/s10163-023-01842-1

    Article  Google Scholar 

  59. Aichberger C, Jungmeier G (2020) Environmental life cycle impacts of automotive batteries based on a literature review. Energies (Basel). https://doi.org/10.3390/en13236345

    Article  Google Scholar 

  60. Bai Y, Muralidharan N, Sun YK et al (2020) Energy and environmental aspects in recycling lithium-ion batteries: concept of battery identity global passport. Mater Today 41:304–315. https://doi.org/10.1016/j.mattod.2020.09.001

    Article  Google Scholar 

  61. Diaz LA, Strauss ML, Adhikari B et al (2020) Electrochemical-assisted leaching of active materials from lithium ion batteries. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2020.104900

    Article  Google Scholar 

  62. Chen Q, Lai X, Gu H et al (2022) Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.133342

    Article  Google Scholar 

  63. Wu F, Liu X, Qu G, Ning P (2022) A critical review on extraction of valuable metals from solid waste. Sep Purif Technol. https://doi.org/10.1016/J.SEPPUR.2022.122043

    Article  Google Scholar 

  64. Xu C, Li L, Zhang M et al (2022) Removal of Fe(III) from sulfuric acid leaching solution of phosphate ores with bisphosphonic acids. Hydrometallurgy. https://doi.org/10.1016/J.HYDROMET.2021.105799

    Article  Google Scholar 

  65. Moazzam P, Boroumand Y, Rabiei P et al (2021) Lithium bioleaching: an emerging approach for the recovery of Li from spent lithium ion batteries. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.130196

    Article  Google Scholar 

  66. Golmohammadzadeh R, Faraji F, Rashchi F (2018) Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review. Resour Conserv Recycl 136:418–435. https://doi.org/10.1016/j.resconrec.2018.04.024

    Article  Google Scholar 

  67. Alipanah M, Reed D, Thompson V et al (2023) Sustainable bioleaching of lithium-ion batteries for critical materials recovery. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.135274

    Article  Google Scholar 

  68. Pathak A, Morrison L, Healy MG (2017) Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: a critical review. Bioresour Technol 229:211–221. https://doi.org/10.1016/J.BIORTECH.2017.01.001

    Article  Google Scholar 

  69. Naseri T, Bahaloo-Horeh N, Mousavi SM (2019) Bacterial leaching as a green approach for typical metals recovery from end-of-life coin cells batteries. J Clean Prod 220:483–492. https://doi.org/10.1016/J.JCLEPRO.2019.02.177

    Article  Google Scholar 

  70. Nazerian M, Bahaloo-Horeh N, Mousavi SM (2023) Enhanced bioleaching of valuable metals from spent lithium-ion batteries using ultrasonic treatment. Korean J Chem Eng 40:584–593. https://doi.org/10.1007/s11814-022-1257-2

    Article  Google Scholar 

  71. Roy JJ, Rarotra S, Krikstolaityte V et al (2022) Green recycling methods to treat lithium-ion batteries e-waste: a circular approach to sustainability. Adv Mater. https://doi.org/10.1002/adma.202103346

    Article  Google Scholar 

  72. Gu K, Xia W, Zhou J et al (2023) From waste to wealth: novel approach for recovery of metals from spent lithium-ion batteries using biological waste. ACS Sustain Chem Eng 11:13606–13615. https://doi.org/10.1021/acssuschemeng.3c03075

    Article  Google Scholar 

  73. Do MP, Lim HK, Tan CK et al (2023) Fruit waste-derived lixiviant: a viable green chemical for lithium-ion battery recycling. J Clean Prod 420:138303. https://doi.org/10.1016/j.jclepro.2023.138303

    Article  Google Scholar 

  74. Ghassa S, Farzanegan A, Gharabaghi M, Abdollahi H (2021) Iron scrap, a sustainable reducing agent for waste lithium ions batteries leaching: an environmentally friendly method to treating waste with waste. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2020.105348

    Article  Google Scholar 

  75. Quijada-Maldonado E, Olea F, Sepúlveda R et al (2020) Possibilities and challenges for ionic liquids in hydrometallurgy. Sep Purif Technol 251:117289. https://doi.org/10.1016/j.seppur.2020.117289

    Article  Google Scholar 

  76. Xu L, Chen C, Fu ML (2020) Separation of cobalt and lithium from spent lithium-ion battery leach liquors by ionic liquid extraction using Cyphos IL-101. Hydrometallurgy 197:105439. https://doi.org/10.1016/j.hydromet.2020.105439

    Article  Google Scholar 

  77. Morina R, Merli D, Mustarelli P, Ferrara C (2023) Lithium and cobalt recovery from lithium-ion battery waste via functional ionic liquid extraction for effective battery recycling. ChemElectroChem. https://doi.org/10.1002/celc.202201059

    Article  Google Scholar 

  78. Nguyen VNH, Lee MS (2021) Separation of Co(II), Ni(II), Mn(II) and Li(I) from synthetic sulfuric acid leaching solution of spent lithium ion batteries by solvent extraction. J Chem Technol Biotechnol 96:1205–1217. https://doi.org/10.1002/jctb.6632

    Article  Google Scholar 

  79. Ilyas S, Srivastava RR, Kim H (2023) Selective separation of cobalt versus nickel by split-phosphinate complexation using a phosphonium-based ionic liquid. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01558-y

    Article  Google Scholar 

  80. Alder CM, Hayler JD, Henderson RK et al (2016) Updating and further expanding GSK’s solvent sustainability guide. Green Chem 18:3879–3890. https://doi.org/10.1039/c6gc00611f

    Article  Google Scholar 

  81. Byrne FP, Jin S, Paggiola G et al (2016) Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Processes. https://doi.org/10.1186/S40508-016-0051-Z

    Article  Google Scholar 

  82. Ma C, Svärd M, Forsberg K (2022) Recycling cathode material LiCo1/3Ni1/3Mn1/3O2 by leaching with a deep eutectic solvent and metal recovery with antisolvent crystallization. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2022.106579

    Article  Google Scholar 

  83. Huang F, Li T, Yan X et al (2022) Ternary deep eutectic solvent (des) with a regulated rate-determining step for efficient recycling of lithium cobalt oxide. ACS Omega 7:11452–11459. https://doi.org/10.1021/acsomega.2c00742

    Article  Google Scholar 

  84. Wang S, Zhang Z, Lu Z, Xu Z (2020) A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries. Green Chem 22:4473–4482. https://doi.org/10.1039/d0gc00701c

    Article  Google Scholar 

  85. Yan Q, Ding A, Li M et al (2023) Green leaching of lithium-ion battery cathodes by ascorbic acid modified guanidine-based deep eutectic solvents. Energy Fuels 37:1216–1224. https://doi.org/10.1021/acs.energyfuels.2c03699

    Article  Google Scholar 

  86. Luo Y, Yin C, Ou L (2023) Recycling of waste lithium-ion batteries via a one-step process using a novel deep eutectic solvent. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2023

    Article  Google Scholar 

  87. Roldán-Ruiz MJ, Ferrer ML, Gutiérrez MC, Del Monte F (2020) Highly efficient p-toluenesulfonic acid-based deep-eutectic solvents for cathode recycling of li-ion batteries. ACS Sustain Chem Eng 8:5437–5445. https://doi.org/10.1021/acssuschemeng.0c00892

    Article  Google Scholar 

  88. Peeters N, Binnemans K, Riaño S (2020) Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents. Green Chem 22:4210–4221. https://doi.org/10.1039/d0gc00940g

    Article  Google Scholar 

  89. Li Y, Sun M, Cao Y et al (2024) Designing low toxic deep eutectic solvents for the green recycle of lithium-ion batteries cathodes. Chemsuschem. https://doi.org/10.1002/cssc.202301953

    Article  Google Scholar 

  90. Hayyan M, Hashim MA, Hayyan A et al (2013) Are deep eutectic solvents benign or toxic? Chemosphere 90:2193–2195. https://doi.org/10.1016/j.chemosphere.2012.11.004

    Article  Google Scholar 

  91. William B, Noémie P, Brigitte E, Géraldine P (2020) Supercritical fluid methods: an alternative to conventional methods to prepare liposomes. Chem Eng J 383:123106. https://doi.org/10.1016/j.cej.2019.123106

    Article  Google Scholar 

  92. Khan SA, Ahmad S, Lau KT et al (2023) A novel strategy of thermal management system for battery energy storage system based on supercritical CO2. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2023.116676

    Article  Google Scholar 

  93. Han Y, Zhou X, Fang R et al (2023) Supercritical carbon dioxide technology in synthesis, modification, and recycling of battery materials. Carbon Neutraliz. https://doi.org/10.1002/cnl2.49

    Article  Google Scholar 

  94. Fu Y, Schuster J, Petranikova M, Ebin B (2021) Innovative recycling of organic binders from electric vehicle lithium-ion batteries by supercritical carbon dioxide extraction. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2021.105666

    Article  Google Scholar 

  95. Mu D, Liang J, Zhang J et al (2022) Exfoliation of active materials synchronized with electrolyte extraction from spent lithium-ion batteries by supercritical CO2. ChemistrySelect. https://doi.org/10.1002/slct.202200841

    Article  Google Scholar 

  96. Li R, Li Y, Dong L et al (2023) Study on selective recovery of lithium ions from lithium iron phosphate powder by electrochemical method. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2023.123133

    Article  Google Scholar 

  97. Yang L, Gao Z, Liu T et al (2023) Direct electrochemical leaching method for high-purity lithium recovery from spent lithium batteries. Environ Sci Technol 57:4591–4597. https://doi.org/10.1021/acs.est.3c00287

    Article  Google Scholar 

  98. Pell R, Tijsseling L, Goodenough K et al (2021) Towards sustainable extraction of technology materials through integrated approaches. Nat Rev Earth Environ 2:665–679. https://doi.org/10.1038/s43017-021-00211-6

    Article  Google Scholar 

  99. Makarova I, Soboleva E, Osipenko M et al (2020) Electrochemical leaching of rare-earth elements from spent NdFeB magnets. Hydrometallurgy 192:105264. https://doi.org/10.1016/j.hydromet.2020.105264

    Article  Google Scholar 

  100. Kumari A, Sahu SK (2023) A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet. Sep Purif Technol 317:123527. https://doi.org/10.1016/j.seppur.2023.123527

    Article  Google Scholar 

  101. İnci M, Büyük M, Demir MH, İlbey G (2021) A review and research on fuel cell electric vehicles: topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects. Renew Sustain Energy Rev 137:110648. https://doi.org/10.1016/j.rser.2020.110648

    Article  Google Scholar 

  102. Yamini Y, Seidi S, Rezazadeh M (2014) Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry—a review. Anal Chim Acta 814:1–22. https://doi.org/10.1016/j.aca.2013.12.019

    Article  Google Scholar 

  103. Adhikari B, Chowdhury NA, Diaz LA et al (2023) Electrochemical leaching of critical materials from lithium-ion batteries: a comparative life cycle assessment. Resour Conserv Recycl 193:106973. https://doi.org/10.1016/j.resconrec.2023.106973

    Article  Google Scholar 

  104. Li J, Li L, Yang R, Jiao J (2023) Assessment of the lifecycle carbon emission and energy consumption of lithium-ion power batteries recycling: a systematic review and meta-analysis. J Energy Storage 65:107306. https://doi.org/10.1016/j.est.2023.107306

    Article  Google Scholar 

  105. Wagner-Wenz R, van Zuilichem A-J, Göllner-Völker L et al (2022) Recycling routes of lithium-ion batteries: a critical review of the development status, the process performance, and life-cycle environmental impacts. MRS Energy Sustain 10:1–34. https://doi.org/10.1557/s43581-022-00053-9

    Article  Google Scholar 

  106. Domingues AM, de Souza RG (2024) Review of life cycle assessment on lithium-ion batteries (LIBs) recycling. Next Sustain 3:100032. https://doi.org/10.1016/j.nxsust.2024.100032

    Article  Google Scholar 

  107. Yang Z, Huang H, Lin F (2022) Sustainable electric vehicle batteries for a sustainable world: perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy. Adv Energy Mater. https://doi.org/10.1002/aenm.202200383

    Article  Google Scholar 

  108. Noudeng V, Van QN, Xuan TD (2022) A future perspective on waste management of lithium-ion batteries for electric vehicles in Lao PDR: current status and challenges. Int J Environ Res Public Health 19:16169. https://doi.org/10.3390/ijerph192316169

    Article  Google Scholar 

  109. Chen X, Li S, Wang Y et al (2021) Recycling of LiFePO 4 cathode materials from spent lithium-ion batteries through ultrasound-assisted Fenton reaction and lithium compensation. Waste Manage 136:67–75. https://doi.org/10.1016/j.wasman.2021.09.026

    Article  Google Scholar 

  110. Kubas J, Ballay M, Zabovska K (2022) Analysis of infrastructure development in the european union in the field of electromobility. Eng Rural Dev: Proc. https://doi.org/10.22616/ERDev.2022.21.TF289

    Article  Google Scholar 

  111. Koengkan M, Fuinhas JA, Teixeira M et al (2022) The capacity of battery-electric and plug-in hybrid electric vehicles to mitigate CO2 emissions: macroeconomic evidence from European union countries. World Electr Veh J. https://doi.org/10.3390/wevj13040058

    Article  Google Scholar 

  112. Koengkan M, Fuinhas JA, Belucio M et al (2022) The impact of battery-electric vehicles on energy consumption: a macroeconomic evidence from 29 European countries. World Electr Veh J. https://doi.org/10.3390/wevj13020036

    Article  Google Scholar 

  113. Elwert T, Goldmann D, Römer F et al (2015) Current developments and challenges in the recycling of key components of (hybrid) electric vehicles. Recycling 1:25–60. https://doi.org/10.3390/recycling1010025

    Article  Google Scholar 

  114. Islam MT, Huda N, Baumber A et al (2022) Waste battery disposal and recycling behavior: a study on the Australian perspective. Environ Sci Pollut Res 29:58980–59001. https://doi.org/10.1007/S11356-022-19681-2/TABLES/7

    Article  Google Scholar 

  115. Malinauskaite J, Anguilano L, Rivera XS (2021) Circular waste management of electric vehicle batteries: legal and technical perspectives from the EU and the UK post Brexit. Int J Thermofluids 10:100078. https://doi.org/10.1016/J.IJFT.2021.100078

    Article  Google Scholar 

  116. Yun L, Linh D, Shui L et al (2018) Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resour Conserv Recycl 136:198–208. https://doi.org/10.1016/J.RESCONREC.2018.04.025

    Article  Google Scholar 

  117. Rallo H, Sánchez A, Canals L, Amante B (2022) Battery dismantling centre in Europe: a centralized vs decentralized analysis. Resour, Conserv Recycl Adv 15:200087. https://doi.org/10.1016/J.RCRADV.2022.200087

    Article  Google Scholar 

  118. Lander L, Cleaver T, Rajaeifar MA et al (2021) Financial viability of electric vehicle lithium-ion battery recycling. iScience. https://doi.org/10.1016/j.isci.2021.102787

    Article  Google Scholar 

  119. Lannoo S, Vilas-Boas A, Sadeghi SM et al (2019) An environmentally friendly closed loop process to recycle raw materials from spent alkaline batteries. J Clean Prod 236:117612. https://doi.org/10.1016/J.JCLEPRO.2019.117612

    Article  Google Scholar 

  120. Pražanová A, Knap V, Stroe DI (2022) Literature review, recycling of lithium-ion batteries from electric vehicles part I: recycling technology. Energies (Basel) 15:1086. https://doi.org/10.3390/en15031086

    Article  Google Scholar 

  121. Georgi-Maschler T, Friedrich B, Weyhe R et al (2012) Development of a recycling process for Li-ion batteries. J Power Sources 207:173–182. https://doi.org/10.1016/J.JPOWSOUR.2012.01.152

    Article  Google Scholar 

  122. Chen M, Ma X, Chen B et al (2019) Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3:2622–2646. https://doi.org/10.1016/J.JOULE.2019.09.014

    Article  Google Scholar 

  123. Schoonover William (2022) Safety advisory notice for the disposal and recycling of lithium batteries in commercial transportation

  124. Zheng P, Young D, Yang T et al (2023) Powering battery sustainability: a review of the recent progress and evolving challenges in recycling lithium-ion batteries. Front Sustain Resour Manag. https://doi.org/10.3389/fsrma.2023.1127001

    Article  Google Scholar 

  125. Neumann J, Petranikova M, Meeus M et al (2022) Recycling of lithium-ion batteries—current state of the art, circular economy, and next generation recycling. Adv Energy Mater 12:2102917. https://doi.org/10.1002/AENM.202102917

    Article  Google Scholar 

  126. Tawonezvi T, Nomnqa M, Petrik L, Bladergroen BJ (2023) Recovery and recycling of valuable metals from spent lithium-ion batteries: a comprehensive review and analysis. Energies 16:1365. https://doi.org/10.3390/EN16031365

    Article  Google Scholar 

  127. Redwood Materials | Circular supply chain for lithium-ion batteries. https://www.redwoodmaterials.com/. Accessed 27 Apr 2023

  128. Guangdong Bangpu Cycle Technology Co (2023) Recycling business_Guangdong Bangpu Recycling Technology Co., Ltd.—a waste battery recycling expert. https://www.brunp.com.cn/intro/14.html. Accessed 6 Aug 2023

  129. Horowitz J, Coffin D, Taylor B (2022) Supply chain for EV batteries: 2020 trade and value-added update. SSRN Electron J. https://doi.org/10.2139/ssrn.3980828

    Article  Google Scholar 

  130. Velázquez-Martínez O, Valio J, Santasalo-Aarnio A et al (2019) A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 5:68. https://doi.org/10.3390/batteries5040068

    Article  Google Scholar 

  131. Sun S, Jin C, He W et al (2021) Management status of waste lithium-ion batteries in China and a complete closed-circuit recycling process. Sci Total Environ 776:145913. https://doi.org/10.1016/J.SCITOTENV.2021.145913

    Article  Google Scholar 

  132. Yu W, Guo Y, Shang Z et al (2022) A review on comprehensive recycling of spent power lithium-ion battery in China. Etransportation 11:100155. https://doi.org/10.1016/j.etran.2022.100155

    Article  Google Scholar 

  133. Barman P, Dutta L, Bordoloi S et al (2023) Renewable energy integration with electric vehicle technology: a review of the existing smart charging approaches. Renew Sustain Energy Rev 183:113518. https://doi.org/10.1016/j.rser.2023.113518

    Article  Google Scholar 

  134. Paraschiv LS, Paraschiv S (2023) Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Rep 9:535–544. https://doi.org/10.1016/j.egyr.2023.07.024

    Article  Google Scholar 

  135. Abbasi KR, Shahbaz M, Zhang J et al (2022) Analyze the environmental sustainability factors of China: the role of fossil fuel energy and renewable energy. Renew Energy 187:390–402. https://doi.org/10.1016/j.renene.2022.01.066

    Article  Google Scholar 

  136. Wang L, Song J, Qiao R et al (2015) Rhombohedral Prussian White as cathode for rechargeable sodium-ion batteries. J Am Chem Soc. https://doi.org/10.1021/ja510347s

    Article  Google Scholar 

  137. Deetz JD, Cao F, Wang Q, Sun H (2018) Exploring the liquid structure and ion formation in magnesium borohydride electrolyte using density functional theory. J Electrochem Soc. https://doi.org/10.1149/2.0321802jes

    Article  Google Scholar 

  138. Baggetto L, Niessen RR, Roozeboom F, Notten PP (2008) High energy density all-solid-state batteries: a challenging concept towards 3D integration. Adv Funct Mater. https://doi.org/10.1002/adfm.200701245

    Article  Google Scholar 

  139. Isosaari P, Srivastava V, Sillanpää M (2019) Ionic liquid-based water treatment technologies for organic pollutants: current status and future prospects of ionic liquid mediated technologies. Sci Total Environ 690:604–619. https://doi.org/10.1016/j.scitotenv.2019.06.421

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein K. Amusa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amusa, H.K., Sadiq, M., Alam, G. et al. Electric vehicle batteries waste management and recycling challenges: a comprehensive review of green technologies and future prospects. J Mater Cycles Waste Manag (2024). https://doi.org/10.1007/s10163-024-01982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10163-024-01982-y

Keywords

Navigation