Skip to main content

Advertisement

Log in

Review of carbon sequestration by alkaline industrial wastes: potential applications in landfill biogeochemical cover systems

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The surge in global industrialization has significantly increased greenhouse gas concentrations in the Earth's atmosphere, with carbon dioxide (CO2) being the predominant contributor to about two-thirds of the greenhouse effect. Landfill gas (LFG), resulting from the biodegradation of municipal solid waste (MSW), mainly consists of methane (CH4) and CO2. To counteract uncontrolled CO2 emissions from waste decomposition, an innovative, low-cost biogeochemical cover (BGCC) system for landfills utilizing biochar-amended soil and basic oxygen furnace (BOF) slag for CO2 carbonation has been developed. Despite the effectiveness of BOF slag in CO2 removal, its limited availability near landfill sites presents sustainability challenges, necessitating the search for viable alternatives within the BGCC system that can achieve efficient CO2 sequestration through direct aqueous mineral carbonation. This review explores various carbon sequestration techniques, identifying potential alkaline industrial solid wastes as substitutes for BOF slag, and evaluates these materials—namely cement kiln dust (CKD), blast furnace (BF) slag, coal fly ash (CFA), and concrete waste—for their compatibility with the BGCC system. CKD is highlighted as having the highest carbonation potential based on its capacity for direct aqueous carbonation, with a comparative analysis revealing substantial differences in the carbonation capacities of the materials. Given the fine-grained nature of the selected materials, the review also emphasizes the need to integrate them into barrier soil layers or use them as standalone layers within the BGCC. In conclusion, this review accentuates the potential of alternative materials in achieving effective CO2 sequestration within BGCC, thereby addressing the challenges related to the availability of BOF slag and promoting sustainable landfill management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CO2 :

Carbon dioxide

CH4 :

Methane

CFCs:

Chlorofluorocarbons

NOAA:

National oceanic and atmospheric administration

PPM:

Parts per million

CCS:

Carbon capture and storage

Ca:

Calcium

Mg:

Magnesium

MSW:

Municipal solid waste

CKD:

Cement kiln dust

BF slag:

Blast furnace slag

BOF slag:

Basic oxygen furnace slag

CFA:

Coal fly ash

CCFA:

Class C coal fly ash

LFG:

Landfill gas

H+ :

Hydrogen ion

CO3 2 :

Carbonate ion

H2S:

Hydrogen sulfide

BGCC:

Biogeochemical cover

CaO:

Calcium oxide

MgO:

Magnesium oxide

H2CO3 :

Carbonic acid

CaCO3 :

Calcite / Calcium carbonate

MgCO3 :

Magnesite / Magnesium carbonate

CH3COOH:

Acetic acid

NaOH:

Sodium hydroxide

NH4HSO4 :

Ammonium bisulfate

NH3 :

Ammonia

NH4HCO3 :

Ammonium bicarbonate

(NH4)2SO4 :

Ammonium sulfate

CaSO4 :

Calcium sulfate

MgSO4 :

Magnesium sulfate

H2SO4 :

Sulfuric acid

HNO3 :

Nitric acid

HCL:

Hydrochloric acid

PPMV:

Parts per million by volume

Ca(OH)2 :

Portlandite / Calcium hydroxide

Ca6(Al)2(SO4)3(OH)12.26H2O:

Ettringite

Ca2Al2SiO7 :

Gehlenite

Ca2Mg(Si2O7):

Akermanite

EDTA:

Ethylenediaminetetraacetic acid

TCLP:

Toxicity characteristic leaching procedure

SPLP:

Synthetic precipitation leaching procedure

References

  1. Kapila S, Oni AO, Gemechu ED, Kumar A (2019) Development of net energy ratios and life cycle greenhouse gas emissions of large-scale mechanical energy storage systems. Energy 170:592–603. https://doi.org/10.1016/j.energy.2018.12.183

    Article  Google Scholar 

  2. Nyambura MG, Mugera GW, Felicia PL, Gathura NP (2011) Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration. J Environ Manage 92(3):655–664. https://doi.org/10.1016/j.jenvman.2010.10.008

    Article  Google Scholar 

  3. Lindsey R (2023) Climate change: atmospheric carbon dioxide. https://www.climate.gov/news-features/understanding-climate/ climate-change-atmospheric-carbon-dioxide. Accessed 23 October 2023

  4. Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J 279:615–630. https://doi.org/10.1016/J.CEJ.2015.05.064

    Article  Google Scholar 

  5. Rhodes CJ (2016) The 2015 Paris climate change conference: COP21. Sci Prog 99:97–104. https://doi.org/10.3184/003685016X14528569315192

    Article  Google Scholar 

  6. Chiang PC, Pan SY (2017) Carbon dioxide mineralization and utilization (pp. 1–452). Singapore: Springer Singapore

  7. Kramer GJ, Haigh M (2009) No quick switch to low-carbon energy. Nature 462(7273):568–569. https://doi.org/10.1038/462568a

    Article  Google Scholar 

  8. USEPA 2023 Basic information about landfill gas. Accessed August 3, 2023. https://www.epa.gov/lmop/basic-information-about-landfill-gas

  9. USEPA 2023 Understanding Global Warming Potentials. Accessed August 3, 2023. https://www.epa.gov/ghgemissions/understanding-global-warming-potentials

  10. Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Bio/Technol 13:79–107. https://doi.org/10.1007/s11157-013-9325-z

    Article  Google Scholar 

  11. Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron Eng 140(9):04014047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001148

    Article  Google Scholar 

  12. Yargicoglu EN, Reddy KR (2017) Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: a laboratory column study. J Environ Manage 193:19–31. https://doi.org/10.1016/j.jenvman.2017.01.068

    Article  Google Scholar 

  13. Yargicoglu EN, Reddy KR (2018) Biochar-amended soil cover for microbial methane oxidation: Effect of biochar amendment ratio and cover profile. J Geotech Geoenviron Eng 144(3):04017123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001845

    Article  Google Scholar 

  14. Chetri JK, Reddy KR, Grubb DG, Green SJ (2022) Biogeochemical versus Conventional Landfill Soil Covers: Analysis of Gas Flow Profiles, Microbial Communities, and Mineralogy. J Hazard Toxic Radioact Waste 26(3):04022022. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000708

    Article  Google Scholar 

  15. Chetri JK, Reddy KR, Grubb DG (2022) Investigation of different biogeochemical cover configurations for mitigation of landfill gas emissions: laboratory column experiments. Acta Geotech 17(12):5481–5498. https://doi.org/10.1007/s11440-022-01509-5

    Article  Google Scholar 

  16. Chetri JK, Reddy KR, Grubb DG (2020) Carbon-dioxide and hydrogen-sulfide removal from simulated landfill gas using steel slag. J Environ Eng 146(12):04020139. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001826

    Article  Google Scholar 

  17. Reddy KR, Kumar G, Grubb D (2018) Innovative biogeochemical soil cover to mitigate landfill gas emissions. In: Protection and restoration of the environment XIV (PREXIV), Greece, 3–6 July 2018

  18. Reddy KR, Gopakumar A, Chetri JK, Kumar G, Grubb DG (2019) Sequestration of landfill gas emissions using basic oxygen furnace slag: Effects of moisture content and humid gas flow conditions. J Environ Eng 145(7):04019033

    Article  Google Scholar 

  19. Reddy KR, Gopakumar A, Rai RK, Kumar G, Chetri JK, Grubb DG (2019) Effect of basic oxygen furnace slag particle size on sequestration of carbon dioxide from landfill gas. Waste Manage Res 37(5):469–477. https://doi.org/10.1177/0734242X18823948

    Article  Google Scholar 

  20. Reddy KR, Chetri JK, Kumar G, Grubb DG (2019) Effect of basic oxygen furnace slag type on carbon dioxide sequestration from landfill gas emissions. Waste Manage 85:425–436. https://doi.org/10.1016/j.wasman.2019.01.013

    Article  Google Scholar 

  21. Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci 38(2):302–320. https://doi.org/10.1016/j.pecs.2011.11.002

    Article  Google Scholar 

  22. Huijgen WJ, Comans RN (2005) Carbon dioxide sequestration by mineral carbonation. Literature review update 2003–2004. Netherlands

  23. Lackner KS, Wendt CH, Butt DP, Joyce EL Jr, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170. https://doi.org/10.1016/0360-5442(95)00071-N

    Article  Google Scholar 

  24. Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Petrol Sci Eng 109:364–392. https://doi.org/10.1016/j.petrol.2013.03.013

    Article  Google Scholar 

  25. Seifritz W (1990) CO2 disposal by means of silicates. Nature 345(6275):486–486. https://doi.org/10.1038/345486b0

    Article  Google Scholar 

  26. Kelemen PB, Matter J (2008) In situ carbonation of peridotite for CO2 storage. Nat Acad Sci USA. https://doi.org/10.1073/pnas.0805794105

    Article  Google Scholar 

  27. Muriithi GN, Petrik LF, Fatoba O, Gitari WM, Doucet FJ, Nel J, Nyale SM, Chuks PE (2013) Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash. J Environ Manage 127:212–220. https://doi.org/10.1016/j.jenvman.2013.05.027

    Article  Google Scholar 

  28. Song X, Xiaoyu C, Lin Q, Yanna L (2019) A review of mineral carbonation from industrial waste. In IOP Conference Series: Earth and Environmental Science (Vol. 401, No. 1, p. 012008). IOP Publishing. https://doi.org/10.1088/1755-1315/401/1/012008

  29. Liu W, Teng L, Rohani S, Qin Z, Zhao B, Xu CC, Ren S, Liu Q, Liang B (2021) CO2 mineral carbonation using industrial solid wastes: A review of recent developments. Chem Eng J. https://doi.org/10.1016/j.cej.2021.129093

    Article  Google Scholar 

  30. Pan SY, Chang EE, Chiang PC (2012) CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol Air Qual Res 12:770–791. https://doi.org/10.4209/aaqr.2012.06.0149

    Article  Google Scholar 

  31. Pan SY, Chiang A, Chang EE, Lin YP, Kim H, Chiang PC (2015) An innovative approach to integrated carbon mineralization and waste utilization: A review. Aer Air Qual Res 15(3):1072–1091. https://doi.org/10.4209/aaqr.2014.10.0240

    Article  Google Scholar 

  32. Chang EE, Pan SY, Chen YH, Tan CS, Chiang PC (2012) Accelerated Carbonation of Steelmaking Slags in a High-gravity Rotating Packed Bed. J Hazard Mater 227–228:97–106. https://doi.org/10.1016/j.jhazmat.2012.05.021

    Article  Google Scholar 

  33. Chang EE, Chen TL, Pan SY, Chen YH, Chiang PC (2013) Kinetic Modeling on CO2 Capture Using Basic Oxygen Furnace Slag Coupled with Cold-rolling Wastewater in a Rotating Packed Bed. J Hazard Mater 260:937–946. https://doi.org/10.1016/j.jhazmat.2013.06.052

    Article  Google Scholar 

  34. Zhang N, Chai YE, Santos RM, Siller L (2020) Advances in process development of aqueous CO2 mineralisation towards scalability. J Environ Chem Eng 8:104453. https://doi.org/10.1016/J.JECE.2020.104453

    Article  Google Scholar 

  35. Mouedhen I, Kemache N, Pasquier LC, Cecchi E, Blais JF, Mercier G (2017) Effect of pCO2 on direct flue gas mineral carbonation at pilot scale. J Environ Manage 198:1–8. https://doi.org/10.1016/J.JENVMAN.2017.04.048

    Article  Google Scholar 

  36. Ben Ghacham A, Cecchi E, Pasquier LC, Blais JF, Mercier G (2015) CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas–solid–liquid and gas–solid routes. J Environ Manage 163:70–77. https://doi.org/10.1016/J.JENVMAN.2015.08.005

    Article  Google Scholar 

  37. Pan SY, Chen YH, Fan LS, Kim H, Gao X, Ling TC, Chiang PC, Pei SL, Gu G (2020) CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction. Nature Sustainability 3(5):399–405. https://doi.org/10.1038/s41893-020-0486-9

    Article  Google Scholar 

  38. Corish A, Coleman T (1995) Cement kiln dust. Concrete (London) 29(5):40–42

    Google Scholar 

  39. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36(3):327–363. https://doi.org/10.1016/j.pecs.2009.11.003

    Article  Google Scholar 

  40. Bertos MF, Simons SJR, Hills CD, Carey PJ (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater 112(3):193–205. https://doi.org/10.1016/j.jhazmat.2004.04.019

    Article  Google Scholar 

  41. Choi SK, Lee S, Song YK, Moon HS (2002) Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash disposal mound. Fuel 81(8):1083–1090

    Article  Google Scholar 

  42. Ribeiro J, Valentim B, Ward C, Flores D (2011) Comprehensive characterization of anthracite fly ash from a thermo-electric power plant and its potential environmental impact. Int J Coal Geol 86(2–3):204–212

    Article  Google Scholar 

  43. US Geological Survey (2020) Mineral commodity summaries 2020. US Geological Survey. https://doi.org/10.3133/mcs2020

    Article  Google Scholar 

  44. Rubio B, Izquierdo MT, Mayoral MC, Bona MT (2008) Preparation and characterization of carbon-enriched coal fly ash. J Environ Manag 88(4):1562–1570. https://doi.org/10.1016/j.jenvman.2007.07.027

    Article  Google Scholar 

  45. Al-Bakri AY, Ahmed HM, Hefni MA (2022) Cement kiln dust (CKD): potential beneficial applications and eco-sustainable solutions. Sustainability 14(12):7022. https://doi.org/10.3390/su14127022

    Article  Google Scholar 

  46. Kunal Siddique R, Rajor A (2012) Use of cement kiln dust in cement concrete and its leachate characteristics. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2012.01.006

    Article  Google Scholar 

  47. US Geological Survey. (2023). Production volume of cement worldwide from 1995 to 2022 (in billion metric tons) [Graph]. In Statista. Accessed October 24, 2023. https://www.statista.com/statistics/1087115/global-cement-production-volume

  48. Huntzinger DN, Gierke JS, Sutter LL, Kawatra SK, Eisele TC (2009) Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J Hazard Mater 168(1):31–37. https://doi.org/10.1016/j.jhazmat.2009.01.122

    Article  Google Scholar 

  49. Huntzinger DN, Gierke JS, Kawatra SK, Eisele TC, Sutter LL (2009) Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ Sci Technol 43(6):1986–1992. https://doi.org/10.1021/es802910z

    Article  Google Scholar 

  50. Jeon J, Kim MJ (2019) CO2 storage and CaCO3 production using seawater and an alkali industrial by-product. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122180

    Article  Google Scholar 

  51. Kim MJ, Jung S (2020) Calcium elution from cement kiln dust using chelating agents, and CO2 storage and CaCO3 production through carbonation. Environ Sci Pollut Res 27:20490–20499. https://doi.org/10.1007/s11356-020-08403-1

    Article  Google Scholar 

  52. Medas D, Cappai G, De Giudici G, Piredda M, Podda S (2017) Accelerated carbonation by cement kiln dust in aqueous slurries: chemical and mineralogical investigation. Greenhouse Gases Sci Technol 7(4):692–705. https://doi.org/10.1002/ghg.1681

    Article  Google Scholar 

  53. Uliasz-Bocheńczyk A, Mokrzycki E (2017) CO2 mineral sequestration with the use of ground granulated blast furnace slag. Gospodarka Surowcami Mineralnymi. https://doi.org/10.1515/gospo-2017-0008

    Article  Google Scholar 

  54. Ren E, Tang S, Liu C, Yue H, Li C, Liang B (2020) Carbon dioxide mineralization for the disposition of blast-furnace slag: reaction intensification using NaCl solutions. Greenhouse Gases Sci Technol 10(2):436–448

    Article  Google Scholar 

  55. Eloneva S, Teir S, Salminen J, Fogelholm CJ, Zevenhoven R (2008) Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy 33(9):1461–1467. https://doi.org/10.1016/j.energy.2008.05.003

    Article  Google Scholar 

  56. Mun M, Cho H (2013) Mineral carbonation for carbon sequestration with industrial waste. Energy Procedia 37:6999–7005

    Article  Google Scholar 

  57. Bang JH, Lee SW, Jeon C, Park S, Song K, Jo WJ, Chae S (2016) Leaching of metal ions from blast furnace slag by using aqua regia for CO2 mineralization. Energies 9(12):996

    Article  Google Scholar 

  58. Liu Q, Liu W, Hu J, Wang L, Gao J, Liang B, Li C (2018) Energy-efficient mineral carbonation of blast furnace slag with high value-added products. J Cleaner Product 197:242–252. https://doi.org/10.1016/j.jclepro.2018.06.150

    Article  Google Scholar 

  59. Liu W, Yin S, Luo D, Zhang G, Yue H, Liang B, Li C (2019) Optimising the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag. J Alloys Comp 774:1151–1159. https://doi.org/10.1016/j.jallcom.2018.09.392

    Article  Google Scholar 

  60. Chu G, Li C, Liu W, Zhang G, Yue H, Liang B, Luo D (2019) Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process. Energy 166:1314–1322. https://doi.org/10.1016/j.energy.2018.10.128

    Article  Google Scholar 

  61. Sim G, Hong S, Moon S, Noh S, Cho J, Triwigati PT, Park Y (2022) Simultaneous CO2 utilization and rare earth elements recovery by novel aqueous carbon mineralization of blast furnace slag. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2022.107327

    Article  Google Scholar 

  62. FHWA (Federal Highway Administration) (2016). User Guidelines for Waste and Byproduct Materials in Pavement Construction. Accessed on September 10, 2023. https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/cfa51.cfm

  63. Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, Xi YQ (2015) A comprehensive review on the applications of coal fly ash. Earth Sci Rev 141:105–121. https://doi.org/10.1016/j.earscirev.2014.11.016

    Article  Google Scholar 

  64. Ćwik A, Casanova I, Rausis K, Koukouzas N, Zarębska K (2018) Carbonation of high-calcium fly ashes and its potential for carbon dioxide removal in coal fired power plants. J Clean Prod 202:1026–1034. https://doi.org/10.1016/j.jclepro.2018.08.234

    Article  Google Scholar 

  65. Dananjayan RRT, Kandasamy P, Andimuthu R (2016) Direct mineral carbonation of coal fly ash for CO2 sequestration. J Clean Prod 112:4173–4182. https://doi.org/10.1016/j.jclepro.2015.05.145

    Article  Google Scholar 

  66. Montes-Hernandez G, Pérez-López R, Renard F, Nieto JM, Charlet L (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161(2–3):1347–1354. https://doi.org/10.1016/j.jhazmat.2008.04.104

    Article  Google Scholar 

  67. Uliasz-Bocheńczyk A, Mokrzycki E, Piotrowski Z, Pomykała R (2009) Estimation of CO2 sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland. Energy Proced 1(1):4873–4879. https://doi.org/10.1016/j.egypro.2009.02.316

    Article  Google Scholar 

  68. Ebrahimi A, Saffari M, Milani D, Montoya A, Valix M, Abbas A (2017) Sustainable transformation of fly ash industrial waste into a construction cement blend via CO2 carbonation. J Clean Prod 156:660–669. https://doi.org/10.1016/j.jclepro.2017.04.037

    Article  Google Scholar 

  69. Ukwattage NL, Ranjith PG, Yellishetty M, Bui HH, Xu T (2015) A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration. J Clean Prod 103:665–674. https://doi.org/10.1016/j.jclepro.2014.03.005

    Article  Google Scholar 

  70. He L, Yu D, Lv W, Wu J, Xu M (2013) A novel method for CO2 sequestration via indirect carbonation of coal fly ash. Ind Eng Chem Res 52(43):15138–15145. https://doi.org/10.1021/ie4023644

    Article  Google Scholar 

  71. Sun Y, Parikh V, Zhang L (2012) Sequestration of carbon dioxide by indirect mineralization using Victorian brown coal fly ash. J Hazard Mater 209:458–466. https://doi.org/10.1021/ef5014314

    Article  Google Scholar 

  72. Monteiro PJ, Miller SA, Horvath A (2017) Towards sustainable concrete. Nat Mater 16(7):698–699. https://doi.org/10.1038/nmat4930

    Article  Google Scholar 

  73. Pearce F (2021) Can the World’s Most Polluting Heavy Industries Decarbonize?. Yale School of Environment. https://e360.yale.edu/features/can-the-worlds-most-polluting-heavy-industries-decarbonize

  74. Faruqi MHZ, Siddiqui FZ (2020) A mini review of construction and demolition waste management in India. Waste Manage Res 38(7):708–716. https://doi.org/10.1177/0734242X20916828

    Article  Google Scholar 

  75. Xuan D, Zhan B, Poon CS, Zheng W (2016) Carbon dioxide sequestration of concrete slurry waste and its valorisation in construction products. Construct Build Mater 113:664–672. https://doi.org/10.1016/j.conbuildmat.2016.03.109

    Article  Google Scholar 

  76. Abbaspour A, Tanyu BF (2020) CO2 sequestration by carbonation processes of rubblized concrete at standard conditions and the related mineral stability diagrams. ACS Sustain Chem Eng 8(17):6647–6656. https://doi.org/10.1021/acssuschemeng.9b07690

    Article  Google Scholar 

  77. Ben Ghacham A, Pasquier LC, Cecchi E, Blais JF, Mercier G (2017) Valorization of waste concrete through CO2 mineral carbonation: Optimizing parameters and improving reactivity using concrete separation. J Clean Prod 166:869–878. https://doi.org/10.1016/j.jclepro.2017.08.015

    Article  Google Scholar 

  78. Ho HJ, Iizuka A, Shibata E, Tomita H, Takano K, Endo T (2020) CO2 utilization via direct aqueous carbonation of synthesized concrete fines under atmospheric pressure. ACS Omega 5(26):15877–15890. https://doi.org/10.1021/acsomega.0c00985

    Article  Google Scholar 

  79. Pasquier LC, Kemache N, Mocellin J, Blais JF, Mercier G (2018) Waste concrete valorization; aggregates and mineral carbonation feedstock production. Geosciences 8(9):342. https://doi.org/10.3390/geosciences8090342

    Article  Google Scholar 

  80. Vanderzee S, Zeman F (2018) Recovery and carbonation of 100% of calcium in waste concrete fines: Experimental results. J Clean Prod 174:718–727. https://doi.org/10.1016/j.jclepro.2017.10.257

    Article  Google Scholar 

  81. Ho HJ, Iizuka A, Lee CH, Chen WS (2023) Mineral carbonation using alkaline waste and byproducts to reduce CO2 emissions in Taiwan. Environ Chem Lett 21(2):865–884. https://doi.org/10.1007/s10311-022-01518-6

    Article  Google Scholar 

  82. Poon CS, Shen P, Jiang Y, Ma Z, Xuan D (2023) Total recycling of concrete waste using accelerated carbonation: A review. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2023.107284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Gaurav Verma: conceptualization, methodology, investigation, resources, writing—original draft, Krishna R. Reddy: conceptualization, methodology, investigation, resources, supervision, project administration, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Krishna R. Reddy.

Ethics declarations

Conflict of interests

The authors state that there are no known financial conflicts or personal associations that might be perceived as having affected the research presented in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, G., Reddy, K.R. Review of carbon sequestration by alkaline industrial wastes: potential applications in landfill biogeochemical cover systems. J Mater Cycles Waste Manag (2024). https://doi.org/10.1007/s10163-024-01975-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10163-024-01975-x

Keywords

Navigation