Skip to main content
Log in

Case study: reuse of excavated soils from the Grand Paris Express project for the formulation of low-carbon cementitious matrixes : Part 1

  • REGIONAL CASE STUDY
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This paper investigates the use of excavated soil from the Grand Paris Express (GPE) project in blended low-carbon binders. The GPE targets to improve the quality of life of the inhabitants of the Paris metropolitan area by providing better transportation, housing, and job opportunities. However, the quantity of excavated material since the start of the GPE project is around 28 million tons (Mt) and will reach 47 Mt by 2027 (Bilan des émissions de gaz à effet de serre de la Société du Grand Paris et du Grand Paris Express, 2022). Soil samples were taken from 4 sites of the GPE project and analyzed for their physical, chemical, and mineralogical characteristics. Results have evidenced that using flash-calcination (FC) treatment can sensitively enhance material properties. Pozzolanic activity of both raw and treated materials, assessed by Chapelle and Frattini tests showed that flash-calcined excavated soils have a chemical reactivity. Mortars formulated with blended cement produced with the FC materials were mechanically tested and disclosed interesting performances. The evaluation of the environmental impact consisting of leaching tests demonstrated that the treated material can be considered as inert as well as the mortars prepared. These findings indicate soils from the GPE project are suitable for reuse in cementitious matrixes and have the potential to provide economic and environmental benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bilan des émissions de gaz à effet de serre de la Société du Grand Paris et du Grand Paris Express (2022)

  2. Heinonen J, Junnila S (2011) Case study on the carbon consumption of two metropolitan cities. Int J Life Cycle Assess 16:569–579. https://doi.org/10.1007/S11367-011-0289-3/TABLES/2

    Article  Google Scholar 

  3. Piao S, Ciais P, Huang Y et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51. https://doi.org/10.1038/nature09364

    Article  Google Scholar 

  4. Blengini GA, Garbarino E (2010) Resources and waste management in Turin (Italy): the role of recycled aggregates in the sustainable supply mix. J Clean Prod 18:1021–1030. https://doi.org/10.1016/J.JCLEPRO.2010.01.027

    Article  Google Scholar 

  5. Gangolells M, Casals M, Forcada N, Macarulla M (2014) Analysis of the implementation of effective waste management practices in construction projects and sites. Resour Conserv Recycl 93:99–111. https://doi.org/10.1016/J.RESCONREC.2014.10.006

    Article  Google Scholar 

  6. Eras J, Gutiérrez A, Capote D et al (2013) Improving the environmental performance of an earthwork project using cleaner production strategies. Elsevier, Amsterdam. https://doi.org/10.1016/j.jclepro.2012.11.026

  7. Fabre P, Prévot A-C, Semal L (2016) Le Grand Paris, ville durable? Limites pour la biodiversité urbaine dans un projet de métropolisation emblématique. In: The Greater Paris, a sustainable city? Limits for urban biodiversity in emblematic metropolis plan. Développement durable et territoires. https://doi.org/10.4000/developpementdurable.11131

  8. Ghezloun A, Saidane A, Merabet H (2017) The COP 22 new commitments in support of the Paris Agreement. Energy Procedia 119:10–16. https://doi.org/10.1016/j.egypro.2017.07.040

    Article  Google Scholar 

  9. Blau J (2017) The Paris Agreement. The Paris Agreement: climate change, solidarity, and human rights. pp 1–119. https://doi.org/10.1007/978-3-319-53541-8

  10. Magnusson S, Lundberg K, Svedberg B, Knutsson S (2015) Sustainable management of excavated soil and rock in urban areas—a literature review. J Clean Prod 93:18–25. https://doi.org/10.1016/j.jclepro.2015.01.010

    Article  Google Scholar 

  11. Kenley R, Harfield H (2011) Greening procurement: a research agenda for optimizing mass-haul during linear infrastructure construction

  12. Lenoir T (2019) Reuse of urban soils as earthworks material: geotechnical and environmental specifications. Proceedings 34:3.https://doi.org/10.3390/PROCEEDINGS2019034003

  13. Pramukh GC, Sarangapani G, Prasanna HS (2022) Characteristics of masonry prepared with KM soil as fine aggregate in cement mortar and concrete block. Civil Eng Architect 10:2246–2257. https://doi.org/10.13189/CEA.2022.100603

  14. Yanguatin H, Ramírez JH, Tironi A, Tobón JI (2019) Effect of thermal treatment on pozzolanic activity of excavated waste clays. Constr Build Mater 211:814–823. https://doi.org/10.1016/j.conbuildmat.2019.03.300

    Article  Google Scholar 

  15. Alloul A, Amar M, Benzerzour M, Abriak N (2023) Developing mortar using limestone flash-calcined dredged sediment/millstone-clay cement binder (LFC). J Build Eng 76:107346. https://doi.org/10.1016/j.jobe.2023.107346

    Article  Google Scholar 

  16. Amar M, Benzerzour M, Kleib J, Abriak NE (2021) From dredged sediment to supplementary cementitious material: characterization, treatment, and reuse. Int J Sedim Res 36:92–109

    Article  Google Scholar 

  17. Ramaroson J, Dirion JL, Nzihou A, Depelsenaire G (2009) Characterization and kinetics of surface area reduction during the calcination of dredged sediments. Powder Technol 190:59–64. https://doi.org/10.1016/j.powtec.2008.04.094

    Article  Google Scholar 

  18. Jaskulski R, Jóźwiak-Niedźwiedzka D, Yakymechko Y (2020) Calcined clay as supplementary cementitious material. Materials 13:1–36. https://doi.org/10.3390/ma13214734

    Article  Google Scholar 

  19. Van Bunderen C, Snellings R, Vandewalle L, Cizer Ö (2019) Early-age hydration and autogenous deformation of cement paste containing flash calcined dredging sediments. Constr Build Mater 200:104–115. https://doi.org/10.1016/j.conbuildmat.2018.12.090

    Article  Google Scholar 

  20. AFNOR (2016) NF EN 196-1, Methods of testing cement-Part 1: Determination of strength

  21. Slade RCT, Davies TW, Atakül H et al (1992) Flash calcines of kaolinite: Effect of process variables on physical characteristics. J Mater Sci 27:2490–2500. https://doi.org/10.1007/BF01105062

    Article  Google Scholar 

  22. Teklay A, Yin C, Rosendahl L (2016) Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: a way to reduce CO2 footprint from cement industry. Appl Energy 162:1218–1224. https://doi.org/10.1016/j.apenergy.2015.04.127

    Article  Google Scholar 

  23. Teklay A, Yin C, Rosendahl L, Køhler LL (2015) Experimental and modeling study of flash calcination of kaolinite rich clay particles in a gas suspension calciner. Appl Clay Sci 103:10–19. https://doi.org/10.1016/j.clay.2014.11.003

    Article  Google Scholar 

  24. San Nicolas R, Cyr M, Escadeillas G (2013) Characteristics and applications of flash metakaolins. Appl Clay Sci 83–84:253–262. https://doi.org/10.1016/j.clay.2013.08.036

    Article  Google Scholar 

  25. Nicolas S (2012) Approche performantielle des bétons avec métakaolins obtenus par calcination flash

  26. AFNOR (2008) NF EN 1097-7—Tests for mechanical and physical properties of aggregates—Part 7: determination of the particle density of filler—Pyknometer method

  27. AFNOR (2006) NF EN ISO 18757, Determination of specific surface aea of ceramic powders by gas adsorption using the BET method

  28. AFNOR (2012) NF P 18-513-Additions pour béton hydraulique- Métakaolin

  29. Chu DC, Amar M, Kleib J et al (2022) The Pozzolanic activity of sediments treated by the flash calcination method. Waste Biomass Valor 13:4963–4982. https://doi.org/10.1007/s12649-022-01789-8

    Article  Google Scholar 

  30. Amar M, Benzerzour M, Abriak NE (2022) Designing efficient flash-calcined sediment-based ecobinders. Materials (Basel) 15:7107–7107. https://doi.org/10.3390/MA15207107

    Article  Google Scholar 

  31. Tashimo T, Murota J, Suto T, Kato K (2000) Physical properties of lime powder produced by powder-particle fluidized bed. J Chem Eng Jpn 33:365–371. https://doi.org/10.1252/JCEJ.33.365

    Article  Google Scholar 

  32. Day RL, Shi C (1994) Influence of the fineness of pozzolan on the strength of lime-natural pozzolan cement pastes. Cem Concr Res 24:1485–1491

    Article  Google Scholar 

  33. Vizcaíno Andrés LM, Antoni MG, Alujas Diaz A et al (2015) Effect of fineness in clinker-calcined clays-limestone cements. Adv Cem Res 27:546–556. https://doi.org/10.1680/JADCR.14.00095

    Article  Google Scholar 

  34. Fernandez R, Martirena F, Scrivener KL (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res 41:113–122. https://doi.org/10.1016/j.cemconres.2010.09.013

    Article  Google Scholar 

  35. Danner T, Norden G, Justnes H (2018) Characterisation of calcined raw clays suitable as supplementary cementitious materials. Appl Clay Sci 162:391–402. https://doi.org/10.1016/j.clay.2018.06.030

    Article  Google Scholar 

  36. Menadi B, Kenai S, Khatib J, Aït-Mokhtar A (2009) Strength and durability of concrete incorporating crushed limestone sand. Constr Build Mater 23:625–633. https://doi.org/10.1016/j.conbuildmat.2008.02.005

    Article  Google Scholar 

  37. Ferraz E, Andrejkovičová S, Hajjaji W et al (2015) Pozzolanic activity of metakaolins by the French standard of the modified Chapelle test: a direct methodology. Acta Geodyn Geomater 12:289–298. https://doi.org/10.13168/AGG.2015.0026

  38. Liu Y, Huang Q, Zhao L, Lei S (2021) Influence of kaolinite crystallinity and calcination conditions on the pozzolanic activity of metakaolin. Gospod Surowcami Miner/Miner Resour Manag 37:39–56. https://doi.org/10.24425/GSM.2021.136295

  39. Yudenfreund M, Hanna KM, Skalny J et al (1972) Hardened Portland cement pastes of low porosity V.Compressive strength. Cem Concr Res 2:731–743. https://doi.org/10.1016/0008-8846(72)90008-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouhamadou Amar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amar, M., Kleib, J., Tall, M. et al. Case study: reuse of excavated soils from the Grand Paris Express project for the formulation of low-carbon cementitious matrixes : Part 1. J Mater Cycles Waste Manag (2024). https://doi.org/10.1007/s10163-024-01957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10163-024-01957-z

Keywords

Navigation