Skip to main content
Log in

Utilizing bottom ash from municipal solid waste incineration as a sustainable replacement for natural aggregates in epoxy mortar production: a feasibility study

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In this scientific investigation, we explore the potential of bottom ash from municipal solid waste incineration (MSWI), hereafter referred to as BA-MSWI, as an alternative to natural aggregates in epoxy mortar production. BA-MSWI bottom ash represents a prevalent environmental issue due to its excessive production, and its use in sustainable applications could help reduce the demand for natural aggregates. We conducted experiments by replacing natural sand with varying proportions of BA-MSWI (30–100%) and using epoxy resin (15–20%) as a binder. A packing density model was employed to optimize mixture compactness, calculate total porosity, and determine the required amount of resin. The results indicate a decrease in compressive strength and flexural strength when BA-MSWI is incorporated, but they enhance the thermal properties of the mortar. Importantly, the increased proportion of epoxy resin compensates for the loss of strength induced by the addition of BA-MSWI. From an environmental perspective, this research opens up possibilities for the utilization of BA-MSWI in various construction applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

References

  1. Kaza S, Yao LC, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-1329-0

  2. Upgraded Mineral Sand Fraction from MSWI Bottom Ash: An Alternative Solution for the Substitution of Natural Aggregates in Concrete Applications - ScienceDirect. https://www.sciencedirect.com/science/article/pii/S1877705817317897. Accessed 4 Mar 2021

  3. del Valle-Zermeño R, Formosa J, Chimenos JM et al (2013) Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Manage 33:621–627. https://doi.org/10.1016/j.wasman.2012.09.015

    Article  Google Scholar 

  4. Chimenos JM, Fernández AI, Miralles L et al (2003) Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Manage 23:887–895. https://doi.org/10.1016/S0956-053X(03)00074-6

    Article  Google Scholar 

  5. Clavier KA, Watts B, Liu Y et al (2019) Risk and performance assessment of cement made using municipal solid waste incinerator bottom ash as a cement kiln feed. Resour Conserv Recycl 146:270–279. https://doi.org/10.1016/j.resconrec.2019.03.047

    Article  Google Scholar 

  6. Oehmig WN, Roessler JG, Blaisi NI, Townsend TG (2015) Contemporary practices and findings essential to the development of effective MSWI ash reuse policy in the United States. Environ Sci Policy 51:304–312. https://doi.org/10.1016/j.envsci.2015.04.024

    Article  Google Scholar 

  7. Smorokov A, Kantaev A, Bryankin D et al (2023) Low-temperature method for desiliconization of polymetallic slags by ammonium bifluoride solution. Environ Sci Pollut Res 30:30271–30280. https://doi.org/10.1007/s11356-022-24230-y

    Article  Google Scholar 

  8. Matsukevich I, Kulinich N, Romanovski V (2022) Direct reduced iron and zinc recovery from electric arc furnace dust. J Chem Technol Biotechnol 97:3453–3458. https://doi.org/10.1002/jctb.7205

    Article  Google Scholar 

  9. Keulen A, van Zomeren A, Harpe P et al (2016) High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete. Waste Manage 49:83–95. https://doi.org/10.1016/j.wasman.2016.01.010

    Article  Google Scholar 

  10. Jurič B, Hanžič L, Ilić R, Samec N (2006) Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manag 26:1436–1442. https://doi.org/10.1016/j.wasman.2005.10.016

    Article  Google Scholar 

  11. Tang P, Florea MVA, Spiesz P, Brouwers HJH (2016) Application of thermally activated municipal solid waste incineration (MSWI) bottom ash fines as binder substitute. Cem Concr Compos 70:194–205. https://doi.org/10.1016/j.cemconcomp.2016.03.015

    Article  Google Scholar 

  12. Kamarou M, Moskovskikh D, Chan HL et al (2023) Low energy synthesis of anhydrite cement from waste lime mud. J Chem Technol Biotechnol 98:789–796. https://doi.org/10.1002/jctb.7284

    Article  Google Scholar 

  13. Zalyhina V, Cheprasova V, Romanovski V (2024) Recycling of fine fraction of spent foundry sands into fireclay bricks. J Mater Cycles Waste Manag 26:322–330. https://doi.org/10.1007/s10163-023-01825-2

    Article  Google Scholar 

  14. Singh A, Zhou Y, Gupta V, Sharma R (2022) Sustainable use of different size fractions of municipal solid waste incinerator bottom ash and recycled fine aggregates in cement mortar. Case Stud Constr Mater 17:e01434. https://doi.org/10.1016/j.cscm.2022.e01434

    Article  Google Scholar 

  15. Maherzi W, Ennahal I, Benzerzour M et al (2020) Study of the polymer mortar based on dredged sediments and epoxy resin: effect of the sediments on the behavior of the polymer mortar. Powder Technol 361:968–982. https://doi.org/10.1016/j.powtec.2019.10.104

    Article  Google Scholar 

  16. Ennahal I, Maherzi W, Mamindy-Pajany Y et al (2019) Eco-friendly polymers mortar for floor covering based on dredged sediments of the north of France. J Mater Cycles Waste Manag 21:861–871. https://doi.org/10.1007/s10163-019-00843-3

    Article  Google Scholar 

  17. Ennahal I, Maherzi W, Benzerzour M et al (2021) Performance of lightweight aggregates comprised of sediments and thermoplastic waste. Waste Biomass Valor 12:515–530. https://doi.org/10.1007/s12649-020-00970-1

    Article  Google Scholar 

  18. Barczewski M, Sałasińska K, Szulc J (2019) Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: a study into mechanical behavior related to structural and rheological properties. Polym Testing 75:1–11. https://doi.org/10.1016/j.polymertesting.2019.01.017

    Article  Google Scholar 

  19. Tasnim S, Shaikh FUA, Sarker PK (2021) Mechanical properties and microstructure of lightweight polymer composites containing mono and hybrid fillers sourced from recycled solid wastes. Constr Build Mater 277:122369. https://doi.org/10.1016/j.conbuildmat.2021.122369

    Article  Google Scholar 

  20. Sahu R, Gupta MK, Chaturvedi R et al (2020) Moisture resistant stones waste based polymer composites with enhanced dielectric constant and flexural strength. Compos B Eng 182:107656. https://doi.org/10.1016/j.compositesb.2019.107656

    Article  Google Scholar 

  21. Jaya Krishna K, Jayakumar V, Bharathiraja G (2020) Mechanical analysis of medical waste reinforced polymer composite. Materials Today: In Proceedings 22:pp 473–476. https://doi.org/10.1016/j.matpr.2019.07.722

  22. Kou S-C, Poon C-S (2013) A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin. Constr Build Mater 41:146–151. https://doi.org/10.1016/j.conbuildmat.2012.11.083

    Article  Google Scholar 

  23. Tiwari S, Gehlot C, Srivastava D 2020 Synergistic influence of CaCO3 nanoparticle on the mechanical and thermal of fly ash reinforced epoxy polymer composites. Materials Today: In Proceedings. https://doi.org/10.1016/j.matpr.2020.06.205

  24. Krishna MP, kireeti MP, Krishna MR, et al (2018) Mechanical properties of fly ash/ sawdust reinforced epoxy hybrid composites. Materials Today: In Proceedings 5:pp 13025–13030. https://doi.org/10.1016/j.matpr.2018.02.288

  25. Keong GC, Mohd Walad MHB, Xiong OW et al (2017) A study on mechanical properties and leaching behaviour of municipal solid waste (MSW) incineration ash/epoxy composites. Energy Procedia 143:448–453. https://doi.org/10.1016/j.egypro.2017.12.780

    Article  Google Scholar 

  26. Goh CK, Valavan SE, Low TK, Tang LH (2016) Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites. Waste Manage 58:309–315. https://doi.org/10.1016/j.wasman.2016.05.027

    Article  Google Scholar 

  27. Ledee V, De Larrard F, Sedran T, Brochu F (2004) Essai de compacite des fractions granulaires a la table a secousses : Mode operatoire. techniques ET Methodes DES Laboratoires DES Ponts ET Chaussees - Methode D’Essai. Institut Francais des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR). ISBN: 2-7208-0373-1

  28. Nóvoa PJRO, Ribeiro MCS, Ferreira AJM (2004) Mechanical behaviour of cork-modified polymer concrete. Mater Sci Forum 455–456:805–809. https://doi.org/10.4028/www.scientific.net/MSF.455-456.805

    Article  Google Scholar 

  29. Nguyen HG, Ortola S, Ghorbel E (2013) Micromechanical modelling of the elastic behaviour of polymer mortars. Eur J Environ Civ Eng 17:65–83. https://doi.org/10.1080/19648189.2012.739787

    Article  Google Scholar 

  30. Benzannache N, Bezazi A, Bouchelaghem H et al (2018) Statistical analysis of 3-point bending properties of polymer concretes made from marble powder waste, sand grains, and polyester resin. Mech Compos Mater 53:781–790. https://doi.org/10.1007/s11029-018-9703-2

    Article  Google Scholar 

  31. Carrión F, Montalbán L, Real JI, Real T (2014) Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers. Sci World J 2014:1–10. https://doi.org/10.1155/2014/526346

    Article  Google Scholar 

  32. Golestaneh M, Amini G, Najafpour GD, Beygi MA (2010) Evaluation of mechanical strength of epoxy polymer concrete with silica powder as filler. World Appl Sci J 9:216–220

    Google Scholar 

  33. Bărbuţă M, Harja M, Baran I (2010) Comparison of mechanical properties for polymer concrete with different types of filler. J Mater Civ Eng 22:696–701. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000069

    Article  Google Scholar 

  34. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39:933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  Google Scholar 

  35. Ribeiro MCS, Tavares CML, Figueiredo M et al (2003) Bending characteristics of resin concretes. Mat Res 6:247–254. https://doi.org/10.1590/S1516-14392003000200021

    Article  Google Scholar 

  36. Yemam DM, Kim B-J, Moon J-Y, Yi C (2017) Mechanical properties of epoxy resin mortar with sand washing waste as filler. Materials 10:246. https://doi.org/10.3390/ma10030246

    Article  Google Scholar 

  37. Ribeiro MCS, Reis JML, Ferreira AJM, Marques AT (2003) Thermal expansion of epoxy and polyester polymer mortars—plain mortars and fibre-reinforced mortars. Polym Test 22:849–857. https://doi.org/10.1016/S0142-9418(03)00021-7

    Article  Google Scholar 

  38. Wong CP, Bollampally RS (1999) Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci 74:3396–3403. https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14%3c3396::AID-APP13%3e3.0.CO;2-3

    Article  Google Scholar 

  39. Chow TS (1978) Effect of particle shape at finite concentration on thermal expansion of filled polymers. J Polym Sci Polym Phys Ed 16:967–970. https://doi.org/10.1002/pol.1978.180160603

    Article  Google Scholar 

  40. Guo Y, Ruan K, Shi X et al (2020) Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos Sci Technol 193:108134. https://doi.org/10.1016/j.compscitech.2020.108134

    Article  Google Scholar 

  41. Prolongo SG, Gude MR, Ureña A (2012) Water uptake of epoxy composites reinforced with carbon nanofillers. Compos Appl Sci Manuf 43:2169–2175. https://doi.org/10.1016/j.compositesa.2012.07.014

    Article  Google Scholar 

  42. Dibenedetto AT, Wambach AD (1972) The fracture toughness of epoxy-glass bead composites. Int J Polym Mater Polym Biomater 1:159–173. https://doi.org/10.1080/00914037208082114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Ennahal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennahal, I., Abriak, Y., Benzerzour, M. et al. Utilizing bottom ash from municipal solid waste incineration as a sustainable replacement for natural aggregates in epoxy mortar production: a feasibility study. J Mater Cycles Waste Manag (2024). https://doi.org/10.1007/s10163-024-01956-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10163-024-01956-0

Keywords

Navigation