Skip to main content
Log in

Conversion strategies for durian agroindustry waste: value-added products and emerging opportunities

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The majority 65–80% of the durian (Durio zibethinus) fruit is the shell and seed that are inedible and cause major issues in waste management. This paper, therefore, outlines the current plausible methods for treating durian biomass based on the biomass processing technologies of (1) thermochemical treatment for energy production, (2) fiber extraction through physicochemical pretreatment, (3) microbiological conversion techniques and (4) green solvent extraction of polysaccharides and phytochemicals, focusing on notable problems and suggestions toward the recalcitrant structures and high volatile matter contents of durian wastes. Within this scope, the possible value-added products with different functional properties each method are considered with high emphasis on the aspect of scaling up. From this, suitable recommendations have been made to combine the different technology or biomass sources for the most economical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peng JSM (2019) Volatile esters and sulfur compounds in durians and a suggested approach to enhancing economic value of durians. Malays J Sustain Agric 3:5–15

    Article  Google Scholar 

  2. VNA (2021) Thailand to become world’s top durian producer in five years. Vietnam Plus

    Google Scholar 

  3. Momoi YURI (2022) China’s durian boom sparks ASEAN alarm over mega trade deal. NIKKEI Asia

    Google Scholar 

  4. Foo KY, Hameed BH (2011) Transformation of durian biomass into a highly valuable end commodity: trends and opportunities. Biomass Bioenergy 35:2470–2478. https://doi.org/10.1016/j.biombioe.2011.04.004

    Article  Google Scholar 

  5. Basyuni M, Hayati R, Sihaloho MA, Slamet B, Bimantara Y, Habsyah TS, Hanafiah DS, Julianti E (2019) Bioinformatics approach of predicted polyprenol reductase in Durian (Durio zibethinus Murr). IOP Conf Ser Earth Environ Sci 305:012036. https://doi.org/10.1088/1755-1315/305/1/012036

    Article  Google Scholar 

  6. Ha NS, Lu G, Shu D, Yu TX (2020) Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus). J Mech Behav Biomed Mater 104:103603. https://doi.org/10.1016/j.jmbbm.2019.103603

    Article  Google Scholar 

  7. Phungsara B, Phongphinittana E, Jearanaisilawong P (2021) Experimental investigation on durian thorns. IOP Conf Ser Mater Sci Eng 1137:012042. https://doi.org/10.1088/1757-899X/1137/1/012042

    Article  Google Scholar 

  8. H.D Kusumaningrum, N.E. Suyatma, Extraction of pectin from durian rind and its minimum inhibitory concentration towards Staphylococcus aureus and Escherichia coli, in: proceedings of the 2nd SEAFAST international seminar. SciTePress. pp. 72–76. https://doi.org/10.5220/0009978600002833.

  9. Zhan YF, Hou XT, Fan LL, Du ZC, Ch’ng SE, Ng SM, Thepkaysone K, Hao EW, Deng JG (2021) Chemical constituents and pharmacological effects of durian shells in ASEAN countries: a review. Chin Herb Med. 13:461–471. https://doi.org/10.1016/j.chmed.2021.10.001

    Article  Google Scholar 

  10. Masrol SR, Ibrahim MHI, Adnan S (2015) Chemi-mechanical pulping of durian rinds. Procedia Manuf 2:171–180. https://doi.org/10.1016/j.promfg.2015.07.030

    Article  Google Scholar 

  11. Taer E, Dewi P, SugiantoS, Syech R, Taslim R, Salomo S, Susanti Y, Purnama A, Apriwandi A, Agustino A, Setiadi RN (2018) The synthesis of carbon electrode supercapacitor from durian shell based on variations in the activation time. Doi: https://doi.org/10.1063/1.5021219.

  12. Saputro H, Yosin KA, Wijayanto DS, Muslim R, Fitriana L, Munir FA (2021) A preliminary study of biomass briquettes based on biochar from pyrolysis of durian shell. J Phys Conf Ser 1808:012024. https://doi.org/10.1088/1742-6596/1808/1/012024

    Article  Google Scholar 

  13. Liu H, Liu J, Huang H, Evrendilek F, He Y, Buyukada M (2020) Combustion parameters, evolved gases, reaction mechanisms, and ash mineral behaviors of durian shells: a comprehensive characterization and joint-optimization. Bioresour Technol 314:123689. https://doi.org/10.1016/j.biortech.2020.123689

    Article  Google Scholar 

  14. Zubairi SI, Arifin N, Hashim H, Zakaria I (2021) Durian locule (endocarp) water immersion drinking effect to reduce heaty sensation after flesh consumption: a preliminary study. Curr Res Nutr Food Sci J 9:866–874

    Article  Google Scholar 

  15. Mulyati AH, Widiastuti D, Oktaviani LM (2018) Characterization of durian seed flour (Durio zibhetinuss l. ) and estimation of its self life with accelerated self life testing (ASLT) moisture critical method. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1095/1/012001

    Article  Google Scholar 

  16. Permatasari ND, Witoyo JE, Masruri M, Yuwono SS, Widjanarko SB (2022) Nutritional and structural properties of durian seed (Durio Zibenthinus Murr.) flour originated from West Kalimantan, Indonesia. IOP Conf Ser Earth Environ Sci 1012:012038. https://doi.org/10.1088/1755-1315/1012/1/012038

    Article  Google Scholar 

  17. Guan R, Li X, Wachemo AC, Yuan H, Liu Y, Zou D, Zuo X, Gu J (2018) Enhancing anaerobic digestion performance and degradation of lignocellulosic components of rice straw by combined biological and chemical pretreatment. Sci Total Environ 637–638:9–17. https://doi.org/10.1016/j.scitotenv.2018.04.366

    Article  Google Scholar 

  18. Natania K, Wijaya E (2022) Optimization of roasting temperature and time of the durian seed (Durio zibethinus L) as coffee substitution and its flavour profile. Food Res 6:279–287. https://doi.org/10.26656/fr.2017.6(3).413

    Article  Google Scholar 

  19. Br Sembiring AT, Nurminah M, Nainggolan RJ (2020) Effect of sodium metabisulphite concentration and salt concentration on the physicochemical properties of durian seed flour (Durio zibethinus Murr). IOP Conf Ser Earth Environ Sci 454:012107. https://doi.org/10.1088/1755-1315/454/1/012107

    Article  Google Scholar 

  20. Mirhosseini H, Amid BT (2013) Effect of different drying techniques on flowability characteristics and chemical properties of natural carbohydrate-protein Gum from durian fruit seed. Chem Cent J 7:1. https://doi.org/10.1186/1752-153X-7-1

    Article  Google Scholar 

  21. Wang Z (2018) 1.23 Energy and air pollution. Comprehensive energy systems. Elsevier, pp 909–949

    Chapter  Google Scholar 

  22. Cai H, Zou H, Liu J, Xie W, Kuo J, Buyukada M, Evrendilek F (2018) Thermal degradations and processes of waste tea and tea leaves via TG-FTIR: Combustion performances, kinetics, thermodynamics, products and optimization. Bioresour Technol 268:715–725. https://doi.org/10.1016/j.biortech.2018.08.068

    Article  Google Scholar 

  23. Alper K, Tekin K, Karagöz S, Ragauskas AJ (2020) Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustain Energy Fuels 4:4390–4414. https://doi.org/10.1039/D0SE00784F

    Article  Google Scholar 

  24. Haryati S, Putri RW (2018) Torrefaction of Durian peel and bagasse for bio-briquette as an alternative solid fuel. IOP Conf Ser Mater Sci Eng 334:012008. https://doi.org/10.1088/1757-899X/334/1/012008

    Article  Google Scholar 

  25. COAL (Solid fossil fuels and manufactured gases) (2015) Annual questionnaire 2014 and historical revisions. https://www.energydatacenter.org

  26. Zaror CA, Pyle DL (1982) The pyrolysis of biomass: a general review, proceedings of the Indian academy of sciences section C. Eng Sci 5:269. https://doi.org/10.1007/BF02904582

    Article  Google Scholar 

  27. Garica-Perez M, Chaala A, Roy C (2002) Vacuum pyrolysis of sugarcane bagasse. J Anal Appl Pyrolysis 65:111–136

    Article  Google Scholar 

  28. Uddin MdN, Daud WMAW, Abbas HF (2014) Effects of pyrolysis parameters on hydrogen formations from biomass: a review. RSC Adv 4:10467. https://doi.org/10.1039/c3ra43972k

    Article  Google Scholar 

  29. Stauffer E, Dolan JA, Newman R (2008) Chemistry and physics of fire and liquid fuels. Fire debris analysis. Elsevier, pp 85–129

    Chapter  Google Scholar 

  30. Zellagui S, Schönnenbeck C, Zouaoui-Mahzoul N, Leyssens G, Authier O, Thunin E, Porcheron L, Brilhac J-F (2016) Pyrolysis of coal and woody biomass under N2 and CO2 atmospheres using a drop tube furnace—experimental study and kinetic modeling. Fuel Process Technol 148:99–109. https://doi.org/10.1016/j.fuproc.2016.02.007

    Article  Google Scholar 

  31. Thonglem S, Intawin P (2020) Characterization of biochar derived from durian shells by pyrolysis process. RMUTI JOURNAL science and technology. https://www.tci-thaijo.org/index.php/rmutijo/index

  32. Barik D (2019) Energy Extraction From Toxic Waste Originating From Food Processing Industries. Energy from Toxic Organic Waste for Heat and Power Generation. Elsevier, pp 17–42

    Google Scholar 

  33. Wirabuana AD, Alwi RS. Influence of starch binders composition on properties of biomass briquettes from Durian peel (Durio kutejensis Becc), in: 2021: p. 020020. https://doi.org/10.1063/5.0051733.

  34. Saputro H, Liana DN, Firdaus A, Mahmudin M, Evan B, Karsa BS, Perdana VL, Wijayanto DS, Bugis H, Fitriana L (2018) Preliminary study of pellets refuse derived fuel (RDF-5) based on durian waste for feedstock in fast pyrolysis. IOP Conf Ser Mater Sci Eng. 434:012184

    Article  Google Scholar 

  35. Selvarajoo A, Lee CW, Oochit D, Almashjary KHO (2021) Bio-pellets from empty fruit bunch and durian rinds with cornstarch adhesive for potential renewable energy. Mater Sci Energy Technol 4:242–248. https://doi.org/10.1016/j.mset.2021.06.008

    Article  Google Scholar 

  36. Chandra TC, Mirna MM, Sunarso J, Sudaryanto Y, Ismadji S (2009) Activated carbon from durian shell: preparation and characterization. J Taiwan Inst Chem Eng 40:457–462. https://doi.org/10.1016/j.jtice.2008.10.002

    Article  Google Scholar 

  37. Mokhtar MF, Latib EHA, Sufian S, Shaari KZK (2013) Preparation of activated carbon from durian shell and seed. Adv Mat Res. https://doi.org/10.4028/www.scientific.net/AMR.626.887

    Article  Google Scholar 

  38. Daosukho S, Kongkeaw A, Oengeaw U (2012) The Development of durian shell biochar as a nutrition enrichment medium for agricultural purpose : part 1 chemical and physical characterization. Bull Appl Sci. https://doi.org/10.60136/bas.v1.2012.189

    Article  Google Scholar 

  39. Tan YL, Abdullah AZ, Hameed BH (2017) Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: pyrolysis behavior and product analyses. Bioresour Technol 243:85–92. https://doi.org/10.1016/j.biortech.2017.06.015

    Article  Google Scholar 

  40. Faisal M, YelviaSunarti AR, Desvita H (2018) Characteristics of liquid smoke from the pyrolysis of durian peel waste at moderate temperatures. Rasayan J Chem. https://doi.org/10.31788/rjc.2018.1123035

    Article  Google Scholar 

  41. Karvonen J, Kunttu J, Suominen T, Kangas J, Leskinen P, Judl J (2018) Integrating fast pyrolysis reactor with combined heat and power plant improves environmental and energy efficiency in bio-oil production. J Clean Prod 183:143–152. https://doi.org/10.1016/j.jclepro.2018.02.143

    Article  Google Scholar 

  42. Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16:4406–4414. https://doi.org/10.1016/j.rser.2012.04.028

    Article  Google Scholar 

  43. Tan YL, Abdullah AZ, Hameed BH (2018) Catalytic fast pyrolysis of durian rind using silica-alumina catalyst: effects of pyrolysis parameters. Bioresour Technol 264:198–205. https://doi.org/10.1016/j.biortech.2018.05.058

    Article  Google Scholar 

  44. Manmeen A, Kongjan P, Palamanit A, Jariyaboon R (2023) Biochar and pyrolysis liquid production from durian peel by using slow pyrolysis process: Regression analysis, characterization, and economic assessment. Ind Crops Prod 203:117162. https://doi.org/10.1016/j.indcrop.2023.117162

    Article  Google Scholar 

  45. Tekin K, Karagöz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sustain Energy Rev 40:673–687. https://doi.org/10.1016/j.rser.2014.07.216

    Article  Google Scholar 

  46. Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 81:1378–1392. https://doi.org/10.1016/j.rser.2017.05.178

    Article  Google Scholar 

  47. Chi NTL, Anto S, Ahamed TS, Kumar SS, Shanmugam S, Samuel MS, Mathimani T, Brindhadevi K, Pugazhendhi A (2021) A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel 287:119411. https://doi.org/10.1016/j.fuel.2020.119411

    Article  Google Scholar 

  48. Tey JP, Careem MA, Yarmo MA, Arof AK (2016) Durian shell-based activated carbon electrode for EDLCs. Ionics (Kiel) 22:1209–1216. https://doi.org/10.1007/s11581-016-1640-2

    Article  Google Scholar 

  49. Mathimani T, Mallick N (2019) A review on the hydrothermal processing of microalgal biomass to bio-oil—knowledge gaps and recent advances. J Clean Prod 217:69–84. https://doi.org/10.1016/j.jclepro.2019.01.129

    Article  Google Scholar 

  50. Marzbali MH, Kundu S, Halder P, Patel S, Hakeem IG, Paz-Ferreiro J, Madapusi S, Surapaneni A, Shah K (2021) Wet organic waste treatment via hydrothermal processing: a critical review. Chemosphere 279:130557. https://doi.org/10.1016/j.chemosphere.2021.130557

    Article  Google Scholar 

  51. Wang Y, Zhu L, Zhu F, You L, Shen X, Li S (2017) Removal of organic solvents/oils using carbon aerogels derived from waste durian shell. J Taiwan Inst Chem Eng 78:351–358. https://doi.org/10.1016/j.jtice.2017.06.037

    Article  Google Scholar 

  52. Wang K, Zhang Z, Sun Q, Wang P, Li Y (2020) Durian shell-derived N, O, P-doped activated porous carbon materials and their electrochemical performance in supercapacitor. J Mater Sci 55:10142–10154. https://doi.org/10.1007/s10853-020-04740-1

    Article  Google Scholar 

  53. Jayaweera S, Yin K, Hu X, Ng WJ (2019) Facile preparation of fluorescent carbon dots for label-free detection of Fe3+. J Photochem Photobiol A Chem 370:156–163. https://doi.org/10.1016/j.jphotochem.2018.10.052

    Article  Google Scholar 

  54. Jayaweera S, Yin K, Ng WJ (2019) Nitrogen-doped durian shell derived carbon dots for inner filter effect mediated sensing of tetracycline and fluorescent ink. J Fluoresc 29:221–229. https://doi.org/10.1007/s10895-018-2331-3

    Article  Google Scholar 

  55. Zulfajri M, Sudewi S, Rasool A, Hsu SCN, Huang GG (2023) Fluorescent ink and chemical sensing towards tartrazine based on nitrogen-doped carbon dots derived from durian seed waste. Waste Biomass Valorization. https://doi.org/10.1007/s12649-023-02109-4

    Article  Google Scholar 

  56. Farahiyan R, Arif A, Rashid MFHA, Abd Razak J, Azam MA, Abd Manaf M, Ismail S, Mohd Fairuz D, Abdullah HH (2017) Influence of pulping process conditions towards better water resistant effect of durian shell paper by lignin: two level factorial design approach. ARPN J Eng Appl Sci 12:2743–2750

    Google Scholar 

  57. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  58. Amin FR, Khalid H, Zhang H, Rahman SU, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Expr 7:72. https://doi.org/10.1186/s13568-017-0375-4

    Article  Google Scholar 

  59. Lee MC, Koay SC, Chan MY, Pang MM, Chou PM, Tsai KY (2018) Preparation and characterization of durian husk fiber filled polylactic acid biocomposites. MATEC Web Conf 152:02007. https://doi.org/10.1051/matecconf/201815202007

    Article  Google Scholar 

  60. Chen J (2015) Synthetic textile fibers. Textiles and fashion. Elsevier, pp 79–95

    Chapter  Google Scholar 

  61. Freitas BR, Braga JO, Orlandi MP, da Silva BP, Aoki IV, Lins VFC, Cotting F (2022) Characterization of coir fiber powder (Cocos nucifera L.) as an environmentally friendly inhibitor pigment for organic coatings. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2022.05.098

    Article  Google Scholar 

  62. Cai Z, Liu Q, Li H, Wang J, Tai G, Wang F, Han J, Zhu Y, Wu G (2022) Waste-to-resource strategy to fabricate functionalized MOFs composite material based on durian shell biomass carbon fiber and Fe3O4 for highly efficient and recyclable dye adsorption. Int J Mol Sci 23:5900. https://doi.org/10.3390/ijms23115900

    Article  Google Scholar 

  63. Wong JYM, Chan MY (2018) Influence of bleaching treatment by hydrogen peroxide on chitosan/durian husk cellulose biocomposite films. Adv Polym Technol 37:2462–2469. https://doi.org/10.1002/adv.21921

    Article  Google Scholar 

  64. Masrol SR, Ibrahim MHI, Adnan S, Abdul Raub R, Saadon AM, Sukarno KI, Yusoff MFH (2018) Durian rind soda-anthraquinone pulp and paper: effects of elemental chlorine-free bleaching and beating. J Tropical Forest Science 30:106–116

    Article  Google Scholar 

  65. Kumar A, Samadder SR (2017) A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manage 69:407–422. https://doi.org/10.1016/j.wasman.2017.08.046

    Article  Google Scholar 

  66. Zhao C, Cui X, Liu Y, Zhang R, He Y, Wang W, Chen C, Liu G (2017) Maximization of the methane production from durian shell during anaerobic digestion. Bioresour Technol 238:433–438. https://doi.org/10.1016/j.biortech.2017.03.184

    Article  Google Scholar 

  67. Zhao C, Yan H, Liu Y, Huang Y, Zhang R, Chen C, Liu G (2016) Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion. Waste Manage 52:295–301. https://doi.org/10.1016/j.wasman.2016.03.028

    Article  Google Scholar 

  68. Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JWC, Selvam A (2014) Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour Technol 168:214–221. https://doi.org/10.1016/j.biortech.2014.01.048

    Article  Google Scholar 

  69. Shen J, Zhao C, Liu Y, Zhang R, Liu G, Chen C (2019) Biogas production from anaerobic co-digestion of durian shell with chicken, dairy, and pig manures. Energy Convers Manag 198:110535. https://doi.org/10.1016/j.enconman.2018.06.099

    Article  Google Scholar 

  70. Hu Z-T, Huo W, Chen Y, Zhang Q, Hu M, Zheng W, Shao Y, Pan Z, Li X, Zhao J (2022) Humic substances derived from biomass waste during aerobic composting and hydrothermal treatment: a review. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.878686

    Article  Google Scholar 

  71. Mahathaninwong N, Wandee S, Totwaree N, Romyen P (2021) Aerobic composting and vermicomposting of durian shell and citrus peel wastes. BioResources 17:1144–1160

    Article  Google Scholar 

  72. Ahmad Zamri MFM, Akhiar A, Mohd Roslan ME, Mohd Marzuki MH, Saad JM, Shamsuddin AH (2020) Valorisation of organic fraction municipal solid waste via anaerobic co-digestion of Malaysia tropical fruit for biogas production. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/476/1/012077

    Article  Google Scholar 

  73. Karki R, Chuenchart W, Surendra KC, Shrestha S, Raskin L, Sung S, Hashimoto A, Kumar Khanal S (2021) Anaerobic co-digestion: current status and perspectives. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.125001

    Article  Google Scholar 

  74. Muenmee S, Prasertboonyai K (2021) Potential biogas production generated by mono- and co-digestion of food waste and fruit waste (durian shell, dragon fruit and pineapple peel) in different mixture ratio under anaerobic condition. Environ Res Eng Manag 77:25–35. https://doi.org/10.5755/j01.erem.77.1.25234

    Article  Google Scholar 

  75. Tambone F, Scaglia B, D’Imporzano G, Schievano A, Orzi V, Salati S, Adani F (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81:577–583. https://doi.org/10.1016/j.chemosphere.2010.08.034

    Article  Google Scholar 

  76. Alvarenga P, Mourinha C, Farto M, Santos T, Palma P, Sengo J, Morais M-C, Cunha-Queda C (2015) Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Manage 40:44–52. https://doi.org/10.1016/j.wasman.2015.01.027

    Article  Google Scholar 

  77. Nghiem LD, Koch K, Bolzonella D, Drewes JE (2017) Full scale co-digestion of wastewater sludge and food waste: bottlenecks and possibilities. Renew Sustain Energy Rev 72:354–362. https://doi.org/10.1016/j.rser.2017.01.062

    Article  Google Scholar 

  78. Monlau F, Sambusiti C, Ficara E, Aboulkas A, Barakat A, Carrère H (2015) New opportunities for agricultural digestate valorization: current situation and perspectives. Energy Environ Sci 8:2600–2621. https://doi.org/10.1039/C5EE01633A

    Article  Google Scholar 

  79. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534. https://doi.org/10.1007/s00253-006-0779-6

    Article  Google Scholar 

  80. Abdullah A, Winaningsih I, Hadiyarto A (2021) Lactic acid fermentation from durian seeds (Durio zibethinus Murr.) using Lactobacillus plantarum. IOP Conf Ser Mater Sci Eng 1053:012032. https://doi.org/10.1088/1757-899X/1053/1/012032

    Article  Google Scholar 

  81. Patakova P (2013) Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40:169–181. https://doi.org/10.1007/s10295-012-1216-8

    Article  Google Scholar 

  82. Srianta I, Ristiarini S, Nugerahani I (2020) Pigments extraction from monascus-fermented durian seed. IOP Conf Ser Earth Environ Sci 443:012008. https://doi.org/10.1088/1755-1315/443/1/012008

    Article  Google Scholar 

  83. Srianta I, Kuswardani I, Ristiarini S, Kusumawati N, Godelive L, Nugerahani I (2022) Utilization of durian seed for Monascus fermentation and its application as a functional ingredient in yogurt. Bioresour Bioprocess 9:128. https://doi.org/10.1186/s40643-022-00619-y

    Article  Google Scholar 

  84. Angela J, Ristiarini S, Nugerahani I, Srianta I (2021) Development of Monascus-fermented durian seed jelly drink: effect of roselle extract concentration on physicochemical and organoleptic properties of the jelly drink. IOP Conf Ser Earth Environ Sci 794:012136. https://doi.org/10.1088/1755-1315/794/1/012136

    Article  Google Scholar 

  85. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642. https://doi.org/10.1007/s00253-005-0229-x

    Article  Google Scholar 

  86. Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep. https://doi.org/10.1016/j.bbrep.2017.03.003

    Article  Google Scholar 

  87. Seer QH, Nandong J, Shanon T (2017) Experimental study of bioethanol production using mixed cassava and durian seed. IOP Conf Ser Mater Sci Eng 206:012020. https://doi.org/10.1088/1757-899X/206/1/012020

    Article  Google Scholar 

  88. Hou J, Zhang X, Liu S, Zhang S, Zhang Q (2020) A critical review on bioethanol and biochar production from lignocellulosic biomass and their combined application in generation of high-value byproducts. Energy Technol. https://doi.org/10.1002/ente.202000025

    Article  Google Scholar 

  89. Berry SK (1980) Cyclopropene fatty acids in some Malaysian edible seeds and nuts: durian (Durio zibethinus, Murr.). Lipids. https://doi.org/10.1007/BF02534071

    Article  Google Scholar 

  90. Leemud P, Karrila S, Kaewmanee T, Karrila T (2020) Functional and physicochemical properties of durian seed flour blended with cassava starch. J Food Measure Characterization 14:388–400. https://doi.org/10.1007/s11694-019-00301-6

    Article  Google Scholar 

  91. Hartmann C, Siegrist M (2017) Consumer perception and behaviour regarding sustainable protein consumption: a systematic review. Trends Food Sci Technol 61:11–25. https://doi.org/10.1016/j.tifs.2016.12.006

    Article  Google Scholar 

  92. Nussinovitch A (1997) Seed gums. Hydrocolloid applications. Springer, Boston, pp 140–153

    Chapter  Google Scholar 

  93. Amin AM, Ahmad AS, Yin YY, Yahya N, Ibrahim N (2007) Extraction, purification and characterization of durian (Durio zibethinus) seed gum. Food Hydrocoll 21:273–279. https://doi.org/10.1016/j.foodhyd.2006.04.004

    Article  Google Scholar 

  94. Cornelia M, Siratantri T, Prawita R (2015) The utilization of extract durian (Durio zibethinus L) seed gum as an emulsifier in vegan mayonnaise. Procedia Food Sci. https://doi.org/10.1016/j.profoo.2015.01.001

    Article  Google Scholar 

  95. Tongdang T (2008) Some properties of starch extracted from three Thai aromatic fruit seeds. Starch—Stärke 60:199–207. https://doi.org/10.1002/star.200800641

    Article  Google Scholar 

  96. Pimpa W, Pimpa C, Junsangsree P (2012) Development of biodegradable films based on durian seed starch. Adv Mat Res 506:311–314. https://doi.org/10.4028/www.scientific.net/AMR.506.311

    Article  Google Scholar 

  97. Characterization of dried noodles from local durian (Durio zibethinus L.) seed flour (2019) Int J Recent Technol Eng 8:90–93. https://doi.org/10.35940/ijrte.B1019.0782S719.

  98. N. Charoenphun, W.K. Klangbud, W. Kwanhian, Science and Technology RMUTT Journal Production of Gluten Free Cookies Supplemented with Durian Rind Flour, n.d. https://www.researchgate.net/publication/341679800.

  99. Chew ZL, Kua YL, Gan S, Tan KW, Lee TZE (2023) Simultaneous fractionation of low-gluten flour and gum from durian seed: process-properties relationship. Waste Biomass Valorization. https://doi.org/10.1007/s12649-023-02294-2

    Article  Google Scholar 

  100. Hartati FK, Djauhari AB, Sucahyo BS (2023) Proximate and toxicity analysis and the utilization of durian seed flour (Durio zibethinus Merr). Lett Appl NanoBioScience. https://doi.org/10.33263/LIANBS124.151

    Article  Google Scholar 

  101. Waritchon N, Kunlaporn P, Jiraporn S (2019) Effect of wheat flour replacement with durian seed flour on the quality of egg noodles. Int J Agric Technol 15:519–526

    Google Scholar 

  102. Mirhosseini H, Abdul Rashid NF, Tabatabaee Amid B, Cheong KW, Kazemi M, Zulkurnain M (2015) Effect of partial replacement of corn flour with durian seed flour and pumpkin flour on cooking yield, texture properties, and sensory attributes of gluten free pasta. LWT Food Sci Technol 63:184–190. https://doi.org/10.1016/j.lwt.2015.03.078

    Article  Google Scholar 

  103. Nurminah M, Nainggolan RJ, Simanjuntak FK (2019) The effect of lime solution’s concentration (Ca(OH 2) on physicochemical and sensory properties of durian seed’s flour (Durio zibethinus). IOP Conf Ser Earth Environ Sci 305:012032. https://doi.org/10.1088/1755-1315/305/1/012032

    Article  Google Scholar 

  104. Baraheng S, Karrila T (2019) Chemical and functional properties of durian (Durio zibethinus Murr) seed flour and starch. Food Biosci. https://doi.org/10.1016/j.fbio.2019.100412

    Article  Google Scholar 

  105. Wai WW, AlKarkhi AFM, Easa AM (2010) Comparing biosorbent ability of modified citrus and durian rind pectin. Carbohydr Polym 79:584–589. https://doi.org/10.1016/j.carbpol.2009.09.018

    Article  Google Scholar 

  106. Hasem NH, Mohamad Fuzi SFZ, Kormin F, Abu Bakar MF, Sabran SF (2019) Extraction and partial characterization of durian rind pectin. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/269/1/012019

    Article  Google Scholar 

  107. Jong SH, Abdullah N, Muhammad N (2021) Characterisation of pectins extracted from different parts of Malaysian durian rinds. Res J Chem Environ. https://doi.org/10.25303/257rjce9821

    Article  Google Scholar 

  108. Jong SH, Abdullah N, Muhammad N (2023) Rheological characterization of low methoxyl pectin extracted from durian rind. Carbohydr Polym Technol Appl 5:100290. https://doi.org/10.1016/j.carpta.2023.100290

    Article  Google Scholar 

  109. Kusrini E, Usman A, Sani FA, Wilson LD, Abdullah MAA (2019) Simultaneous adsorption of lanthanum and yttrium from aqueous solution by durian rind biosorbent. Environ Monit Assess 191:488. https://doi.org/10.1007/s10661-019-7634-6

    Article  Google Scholar 

  110. Amanah A, Pratamawati TM, Taslimah M, Primanagara R (2019) Potential polysaccharide gel from Durio zibethinus var.Raja galuh rind extract towards Klebsiella pneumoniae bacteria. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1146/1/012029

    Article  Google Scholar 

  111. Nguyen TAT, Nguyen TMT, Le Trinh TT, Nguyen PA, Nguyen VM, Duong NL, Dang-Bao T, Tri N (2022) Facile green synthesis of Ag/Agcl nanocomposite using durian shell extract and its activity against Methicillin-Resistant Staphylococcus Aureus. Nano Biomed Eng. https://doi.org/10.5101/nbe.v14i3.p225-235

    Article  Google Scholar 

  112. He Y, Peng L, Xiong H, Liu W, Zhang H, Peng X, Zhu X, Guo F, Sun Y (2023) The profiles of durian (Durio zibethinus Murr.) shell phenolics and their antioxidant effects on H2O2-treated HepG2 cells as well as the metabolites and organ distribution in rats. Food Res Int. https://doi.org/10.1016/j.foodres.2022.112122

    Article  Google Scholar 

  113. Liu Y, Feng S, Song L, He G, Chen M, Huang D (2013) Secondary metabolites in durian seeds: oligomeric proanthocyanidins. Molecules 18:14172–14185. https://doi.org/10.3390/molecules181114172

    Article  Google Scholar 

  114. Hisham D, Lip J, Suri R, Shafit H, Kharis Z, Shazlin K, Normah A, Nabilah M (2012) Agrowaste: phytosterol from durian seed. World Acad Sci Eng Technol. 69:72–75

    Google Scholar 

  115. Sivapaian A, Metussin R, Hamdan F, Mohd Zain R (1998) Fungi associated with postharvest fruit rots of Durio graveolens and D. kutejensis in Brunei Darussalam. Austral Plant Pathol. https://doi.org/10.1071/AP98033

    Article  Google Scholar 

  116. Renders T, Van Den Bosch S, Koelewijn SF, Schutyser W, Sels BF (2017) Lignin-first biomass fractionation: The advent of active stabilisation strategies. Energy Environ Sci 10:1551–1557. https://doi.org/10.1039/c7ee01298e

    Article  Google Scholar 

  117. Panakkal EJ, Cheenkachorn K, Gundupalli MP, Kitiborwornkul N, Sriariyanun M (2021) Impact of sulfuric acid pretreatment of durian peel on the production of fermentable sugar and ethanol. J Indian Chem Soc 98:100264. https://doi.org/10.1016/j.jics.2021.100264

    Article  Google Scholar 

  118. Jian Z, Yuan-Fang P, Wan-Li W, Qin W, Gong-Nan X, Hong-Fei L, Tian X, Shuang-Fei W (2021) Black liquor increases methane production from excess pulp and paper industry sludge. Chemosphere 280:130665. https://doi.org/10.1016/j.chemosphere.2021.130665

    Article  Google Scholar 

  119. Reyes L, Nikitine C, Vilcocq L, Fongarland P (2020) Green is the new black-a review of technologies for carboxylic acid recovery from black liquor. Green Chem 22:8097–8115. https://doi.org/10.1039/d0gc02627a

    Article  Google Scholar 

  120. Pietzsch N, Ribeiro JLD, de Medeiros JF (2017) Benefits, challenges and critical factors of success for zero waste: a systematic literature review. Waste Manage 67:324–353. https://doi.org/10.1016/j.wasman.2017.05.004

    Article  Google Scholar 

  121. Zhang X, Zhao Z, Ran G, Liu Y, Liu S, Zhou B, Wang Z (2013) Synthesis of lignin-modified silica nanoparticles from black liquor of rice straw pulping. Powder Technol 246:664–668. https://doi.org/10.1016/j.powtec.2013.06.034

    Article  Google Scholar 

  122. Cui J, Sun H, Wang X, Sun J, Niu M, Wen Z (2015) Preparation of siliceous lignin microparticles from wheat husks with a facile method. Ind Crops Prod 74:689–696. https://doi.org/10.1016/j.indcrop.2015.05.061

    Article  Google Scholar 

  123. Boi Ly T, Dang Pham C, Le KA, Le PK (2023) Novel production methods of biochar from durian (Durio Zibethinus) rind to be used as smokeless fuel. Chem Eng Trans. https://doi.org/10.3303/CET23106057

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study.

Author information

Authors and Affiliations

Authors

Contributions

Tuyen B.L. and Co D.P. Conceptualization; Data curation; Roles/Writing—original draft; Writing—review and editing; Conceptualization; Data curation; Roles/Writing—original draft, review and editing. Khoa D.D.B., Duy A.K.N and Long H.L. Formal analysis; Investigation; Visualization, review and editing. Phung K.L Funding acquisition; Methodology; Project administration; Resources; Supervision; review and editing.

Corresponding author

Correspondence to Phung K. Le.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ly, T.B., Pham, C.D., Bui, K.D.D. et al. Conversion strategies for durian agroindustry waste: value-added products and emerging opportunities. J Mater Cycles Waste Manag 26, 1245–1263 (2024). https://doi.org/10.1007/s10163-024-01928-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-024-01928-4

Keywords

Navigation