Skip to main content
Log in

Optimizing Indonesian municipal solid waste collection scenarios: integration of multi-objective search simulation and social cost–benefit analysis

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Waste collection in developing countries, including Indonesia, lacked attention it deserves. Major cities allocate up to 80% of their management budgets to this and smaller regions sacrifice 30% of their regional budget. Thus, an example consequence is South Tangerang collects just 367.5 tons of waste per day out of a total of 1070 tons, with performance hindered by limited optimization options and objectives. We demonstrated practical methods by minimizing three contradictory objectives—travel distance, road density, and number of intersections—primarily extracted road segment characteristic from Google Maps API such speeds and geography. We employed a multi-objective agent-based search simulation called the Ripple Spreading Algorithm and established a night-shift scenario inspired by the history of Fukuoka City. By extending the work schedule from 21:00 to 06:00 and alleviating peak hours, a significant reduction achieved 46% from total expenditure. The proposed idea increases productivity by 200%. We shed light on a new perspective considering social benefits, such as travel time saving, accidents, and emissions, which predicted in positive cash flows over the next 10 years of operation. Our findings provide solutions, reducing costs from IDR 400,000 or 1.08 USD per ton per waste, to 0.77 USD per ton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yadav P, Samadder SR (2018) A critical review of the life cycle assessment studies on solid waste management in Asian countries. J Clean Prod 185:492–515. https://doi.org/10.1016/j.jclepro.2018.02.298

    Article  Google Scholar 

  2. Pasang H, Moore GA, Sitorus G (2007) Neighbourhood-based waste management: a solution for solid waste problems in Jakarta, Indonesia. Waste Manag 27:1924–1938. https://doi.org/10.1016/j.wasman.2006.09.010

    Article  Google Scholar 

  3. Kurniawan TA, Avtar R, Singh D et al (2021) Reforming MSWM in Sukunan (Yogjakarta, Indonesia): a case-study of applying a zero-waste approach based on circular economy paradigm. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.124775

    Article  Google Scholar 

  4. Kojima M, Damanhuri E (2009) 3R Policies for Southeast and East Asia (Report No. RPR-2009-10). Economic Research Institute for ASEAN and East Asia

  5. Damanhuri E, Wahyu IM, Ramang R, Padmi T (2009) Evaluation of municipal solid waste flow in the Bandung metropolitan area, Indonesia. J Mater Cycles Waste Manag 11:270–276. https://doi.org/10.1007/s10163-009-0241-9

    Article  Google Scholar 

  6. Widyarsana IMW, Rahayu MAI (2021) Solid waste management planning for sub-district scale: a case study in Buleleng sub-district, Buleleng district, Bali province, Indonesia. J Mater Cycles Waste Manag 23:2051–2064. https://doi.org/10.1007/s10163-021-01261-0

    Article  Google Scholar 

  7. Damanhuri E, Handoko W, Padmi T (2014) Municipal solid waste management in Indonesia. In: municipal solid waste management in Asia and the Pacific Islands. pp 139–155

  8. Erfani SMH, Danesh S, Karrabi SM, Shad R (2017) A novel approach to find and optimize bin locations and collection routes using a geographic information system. Waste Manag Res 35:776–785. https://doi.org/10.1177/0734242X17706753

    Article  Google Scholar 

  9. Abdallah M, Adghim M, Maraqa M, Aldahab E (2019) Simulation and optimization of dynamic waste collection routes. Waste Manag Res 37:793–802. https://doi.org/10.1177/0734242X19833152

    Article  Google Scholar 

  10. Das S, Bhattacharyya BK (2015) Optimization of municipal solid waste collection and transportation routes. Waste Manag 43:9–18. https://doi.org/10.1016/j.wasman.2015.06.033

    Article  Google Scholar 

  11. Machmud M (2016) Solid waste management in Jakarta and Surabaya. In: observing policy-making in Indonesia. pp 1–232

  12. Kristanto GA, Koven W (2019) Estimating greenhouse gas emissions from municipal solid waste management in Depok, Indonesia. City Environ Interact 4:100027. https://doi.org/10.1016/j.cacint.2020.100027

    Article  Google Scholar 

  13. Razzaq A, Sharif A, Najmi A et al (2021) Dynamic and causality interrelationships from municipal solid waste recycling to economic growth, carbon emissions and energy efficiency using a novel bootstrapping autoregressive distributed lag. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2020.105372

    Article  Google Scholar 

  14. McKinsey & Company (2020) Net-Zero Europe - Decarbonization pathways and socioeconomic implications

  15. Assef FM, Steiner MTA, de Lima EP (2022) A review of clustering techniques for waste management. Heliyon 8:e08784. https://doi.org/10.1016/j.heliyon.2022.e08784

    Article  Google Scholar 

  16. Tascione V, Mosca R, Raggi A (2021) A proposal of an economic optimization model for sustainable waste management. J Clean Prod 279:123581. https://doi.org/10.1016/j.jclepro.2020.123581

    Article  Google Scholar 

  17. Yousefloo A, Babazadeh R (2020) Designing an integrated municipal solid waste management network: a case study. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.118824

    Article  Google Scholar 

  18. Hannan MA, Hossain Lipu MS, Akhtar M et al (2020) Solid waste collection optimization objectives, constraints, modeling approaches, and their challenges toward achieving sustainable development goals. J Clean Prod 277:123557. https://doi.org/10.1016/j.jclepro.2020.123557

    Article  Google Scholar 

  19. Hannan MA, Abdulla Al Mamun M, Hussain A et al (2015) A review on technologies and their usage in solid waste monitoring and management systems: issues and challenges. Waste Manag 43:509–523. https://doi.org/10.1016/j.wasman.2015.05.033

    Article  Google Scholar 

  20. Sulemana A, Donkor EA, Forkuo EK, Oduro-Kwarteng S (2018) Optimal routing of solid waste collection trucks: a review of methods. J Eng (United Kingdom). https://doi.org/10.1155/2018/4586376

    Article  Google Scholar 

  21. Environment Agency Recycle-oriented Cociety Promotion Department (2011) History of Fukuoka Night Collection. https://translate-city-fukuoka-lg-jp.j-server.com/LUCFOC/ns/tl.cgi/https%3A//www.city.fukuoka.lg.jp/kankyo/kateigomi/life/016.html?SLANG=ja&TLANG=en&XMODE=0&XCHARSET=utf-8&XJSID=0

  22. Takahashi W, Suzuki S, Tachifuji A (2021) Evaluation of collection efficiency based on the actual situation of door-to-door collection method in Fukuoka City. In: The 32nd Annual Conference of JSMCWM/3RINCs Autumn. pp 2–3

  23. Banditvilai S, Niraso M (2017) Simulation of the night shift solid waste collection system of phuket municipality. Adv Intell Syst Comput 456:17–24. https://doi.org/10.1007/978-3-319-42972-4_3

    Article  Google Scholar 

  24. Ziaei M, Choobineh A, Abdoli-Eramaki M et al (2019) Psychological and physical job demands, decision latitude, and work-related social support among Iranian waste collectors. Waste Manag 95:377–387. https://doi.org/10.1016/j.wasman.2019.06.031

    Article  Google Scholar 

  25. Ghiani G, Laganà D, Manni E et al (2014) Operations research in solid waste management: a survey of strategic and tactical issues. Comput Oper Res 44:22–32. https://doi.org/10.1016/j.cor.2013.10.006

    Article  Google Scholar 

  26. Liang YC, Minanda V, Gunawan A (2022) Waste collection routing problem: a mini-review of recent heuristic approaches and applications. Waste Manag Res 40:519–537. https://doi.org/10.1177/0734242X211003975

    Article  Google Scholar 

  27. Hu X-B, Wang M, Leeson MS et al (2015) Deterministic agent-based path optimization. Evol Comput 24:319–346. https://doi.org/10.1162/EVCO

    Article  Google Scholar 

  28. Hu XB, Gu SH, Zhang C et al (2021) Finding all Pareto optimal paths by simulating ripple relay race in multi-objective networks. Swarm Evol Comput 64:100908. https://doi.org/10.1016/j.swevo.2021.100908

    Article  Google Scholar 

  29. Commision E (2001) Waste management options. pp 515–526

  30. Boskovic G, Jovicic N, Jovanovic S, Simovic V (2016) Calculating the costs of waste collection: a methodological proposal. Waste Manag Res 34:775–783. https://doi.org/10.1177/0734242X16654980

    Article  Google Scholar 

  31. Rathore P, Sarmah SP (2020) Economic, environmental and social optimization of solid waste management in the context of circular economy. Comput Ind Eng 145:106510. https://doi.org/10.1016/j.cie.2020.106510

    Article  Google Scholar 

  32. Medina-Mijangos R, De Andrés A, Guerrero-Garcia-Rojas H, Seguí-Amórtegui L (2021) A methodology for the technical-economic analysis of municipal solid waste systems based on social cost–benefit analysis with a valuation of externalities. Environ Sci Pollut Res 28:18807–18825. https://doi.org/10.1007/s11356-020-09606-2

    Article  Google Scholar 

  33. D’Onza G, Greco G, Allegrini M (2016) Full cost accounting in the analysis of separated waste collection efficiency: a methodological proposal. J Environ Manag 167:59–65. https://doi.org/10.1016/j.jenvman.2015.09.002

    Article  Google Scholar 

  34. Hibino K, Takakura K, Nugroho SB et al (2023) Performance of takakura composting method in the decentralised composting centre and its comparative study on environmental and economic impacts in Bandung city, Indonesia. Int J Recycl Org Waste Agric 12:1–23. https://doi.org/10.30486/ijrowa.2022.1945234.1379

    Article  Google Scholar 

  35. Binsuwadan J, De Jong G, Batley R, Wheat P (2022) The value of travel time savings in freight transport: a meta-analysis. Transportation (Amst) 49:1183–1209. https://doi.org/10.1007/s11116-021-10207-2

    Article  Google Scholar 

  36. Mohsenizadeh M, Tural MK, Kentel E (2020) Municipal solid waste management with cost minimization and emission control objectives: a case study of Ankara. Sustain Cities Soc 52:101807. https://doi.org/10.1016/j.scs.2019.101807

    Article  Google Scholar 

  37. Jamas T, Nepal R (2010) Issues and options in waste management: a social cost–benefit analysis of waste-to-energy in the UK. Resour Conserv Recycl 54:1341–1352. https://doi.org/10.1016/j.resconrec.2010.05.004

    Article  Google Scholar 

  38. Ferrão P, Ribeiro P, Rodrigues J et al (2014) Environmental, economic and social costs and benefits of a packaging waste management system: a Portuguese case study. Resour Conserv Recycl 85:67–78. https://doi.org/10.1016/j.resconrec.2013.10.020

    Article  Google Scholar 

  39. DLH PKTS (2018) Penelitian Potensi Timbulan dan Komposisi Sampah di Kota Tangerang Selatan

  40. Rianti E (2022) Pemkot Tangsel Gelontorkan Rp. 100 Miliar untuk Penanganan Sampah. In: Republika.co.id. https://news.republika.co.id/berita/r9ak2q485/pemkot-tangsel-gelontorkan-rp-100-miliar-untuk-penanganan-sampah

  41. Belekubun RA (2023) Cukup Bayar Rp. 2000, Sampah Bisa Dibuang di Pasar Cimanggis. In: Kompas.id. https://www.kompas.id/baca/metro/2023/01/18/enggan-bayar-retribusi-mahal-warga-tangsel-buang-sampah-sembarangan

  42. NJ (2021) TPA Cipeucang Overkapasitas, DLH Tangsel: Retribusi Sampah Ditaksir Rp. 3 Miliar Pertahun. In: Tangerang Raya. https://www.tangerangraya.net/2023/08/03/tpa-cipeucang-over-kapasitas-dlh-tangsel-retribusi-sampah-ditaksir-rp-3-miliar-pertahun/

  43. Murpratomo I (2021) Jangan Sampai Biaya Mobil Pengangkut Sampah Jadi Permainan DLH Tangsel. In: KedaiPena.com. https://www.kedaipena.com/jangan-sampai-biaya-mobil-pengangkut-sampah-jadi-permainan-dlh-tangsel/

  44. Yuda (2015) Ini Tarif Kebersihan Terbaru di Tangsel. In: Kabar6.com. http://kabar6.com/ini-tarif-kebersihan-terbaru-di-tangsel/

  45. Hu S, An L, Shen L (2023) A multi-objective modeling and optimization approach to municipal solid waste collection for classified treatment in China towards sustainable development. Sustain Cities Soc. https://doi.org/10.1016/j.scs.2023.104846

    Article  Google Scholar 

  46. Fidelis R, Colmenero JC (2018) Evaluating the performance of recycling cooperatives in their operational activities in the recycling chain. Resour Conserv Recycl 130:152–163. https://doi.org/10.1016/j.resconrec.2017.12.002

    Article  Google Scholar 

  47. Zheng L, Wu K, Li Y et al (2008) Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environ Res 108:15–20. https://doi.org/10.1016/j.envres.2008.04.002

    Article  Google Scholar 

  48. Guerrero LA, Maas G, Hogland W (2013) Solid waste management challenges for cities in developing countries. Waste Manag 33:220–232. https://doi.org/10.1016/j.wasman.2012.09.008

    Article  Google Scholar 

  49. Oktobrianto A, Rifai AI, Akhir AF (2023) The traffic characteristic analysis of Jalan Ciater Raya South Tangerang, Indonesia. Indones J Multidiscip Sci 1:437–450. https://doi.org/10.55324/ijoms.v1i1.401

    Article  Google Scholar 

  50. Jusuf A, Nurprasetio IP, Prihutama A (2017) Macro data analysis of traffic accidents in Indonesia. J Eng Technol Sci 49:133–144. https://doi.org/10.5614/j.eng.technol.sci.2017.49.1.8

    Article  Google Scholar 

  51. Downing A (1997) Accident costs in Indonesia : a review. In: International Conference on Road Safety, India. p 16

  52. International Transport Forum (2018) Speed and crash risk. Research Report. OECD Publ Paris Int Traffic Saf Data Anal Gr 82

  53. Sajise AJ, Samson JN, Quiao L, Sibal J, Raitzer DA, Harder D (2021) Contingent valuation of nonmarket benefits in project economic analysis: a guide to good practice. Asian Development Bank. https://doi.org/10.22617/TCS210514-2

  54. European Commission (2022) GHG Emission Avoidance Methodology for the Innovation Fund. European Commission. https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/innovfund/guidance/ghgemission-avoidance-methodology_innovfund_en.pdf

  55. Alonso C, Kilpatrick J (2022) The distributional impact of a carbon tax in asia and the pacific. IMF Work Pap 2022:1. https://doi.org/10.5089/9798400212383.001

    Article  Google Scholar 

  56. IPCC (2006) Chapter 2.3: mobile combustion. 2006 IPCC Guidel Natl Greenh Gas Invent. pp 1–78

  57. Ika A (2021) Warga Serang Adang Truk Sampah dari Tangel, Protes: “Baunya Luar Biasa 24 Jam, Sampai Enggak Nafsu Makan.” In: Kompas.com. https://regional.kompas.com/read/2021/10/21/140715778/warga-serang-adang-truk-sampah-dari-tangsel-protes-baunya-luar-biasa-24-jam?page=all

  58. Yusup S (2018) Tegas! Truk Sampah Bakal Dilarang Lewat Gerbang Tol Bekasi Barat. In: Radar Bogor. https://www.radarbogor.id/2018/10/20/tegas-truk-sampah-bakal-dilarang-lewat-gerbang-tol-bekasi-barat/

  59. Ferdinan (2018) Kena Razia, 50 Truk Sampah DKI Sempat Ditahan di Bekasi. In: detik.com. https://news.detik.com/berita/d-4262030/kena-razia-50-truk-sampah-dki-sempat-ditahan-di-bekasi

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Machmuddin Fitra Miftahadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miftahadi, M.F., Rachman, I. & Matsumoto, T. Optimizing Indonesian municipal solid waste collection scenarios: integration of multi-objective search simulation and social cost–benefit analysis. J Mater Cycles Waste Manag 26, 1569–1587 (2024). https://doi.org/10.1007/s10163-024-01910-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-024-01910-0

Keywords

Navigation