Skip to main content
Log in

Novel devices for the extraction and recovery of rare-earth metals through recycling of waste

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Efficient waste management practices can utilize waste as a resource for the recovery of valuable metals. Rare-earth metals have significant economic importance and are currently in high demand because of their strategic industrial applications. These metals are critical to the development of advanced devices. However, the supply of critical metals from naturally occurring ores is facing scarcity due to the technological bottlenecks, mining restrictions, and geopolitical issues. Industrial and urban waste can be a useful resource for the recovery of these metals. Since conventional methods release toxic emissions into the environment, new technologies for metal recovery from waste should be investigated. Microfluidic devices such as membranes and coiled flow inverters may be an alternative technology for waste recycling. The aim of this paper is to review the possible applications of microextraction technology for metal recovery, and to gain an insight to the metal ion transport in microfluidic devices that can provide enhanced mass-transfer rates. The relevant published literature show that device fabricated in various helical shapes with 90° bends in flow trajectory can potentially replace conventional extraction systems. Studies demonstrate that nearly six-times enhancements in separation efficiencies have been achieved with respect to the values of Sherwood number obtained for gas–liquid contact operations when coiled membrane modules replace conventional extractors. The microfluidic devices for metal recovery from waste may therefore be considered for future industrial applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Aydin G, Kaya S, Karakurt I (2017) Utilization of solid-cutting waste of granite as an alternative abrasive in abrasive waterjet cutting of marble. J Clean Prod 159:241–247. https://doi.org/10.1016/j.jclepro.2017.04.173

    Article  Google Scholar 

  2. Celep O, Aydin G, Karakurt I (2013) Diamond recovery from waste sawblades: a preliminary investigation. Proc Inst Mech Eng B J Eng Manuf 227:917–921. https://doi.org/10.1177/0954405412471524

    Article  Google Scholar 

  3. Kaza S, Yao LC, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank, Washington, DC

    Book  Google Scholar 

  4. Parliament E (2021) Circular economy: definition, importance and benefits. Directorate General for Communication

  5. Jadhao PR, Ahmad E, Pant KK, Nigam KDP (2020) Environmentally friendly approach for the recovery of metallic fraction from waste printed circuit boards using pyrolysis and ultrasonication. Waste Manag 118:150–160. https://doi.org/10.1016/j.wasman.2020.08.028

    Article  Google Scholar 

  6. Chauhan G, Kaur PJ, Pant KK, Nigam KDP (2020) Sustainable Metal Extraction from Waste Streams. Wiley, Hoboken

    Book  Google Scholar 

  7. Kamimoto Y, Itoh T, Yoshimura G, Kuroda K, Hagio T, Ichino R (2018) Electrodeposition of rare-earth elements from neodymium magnets using molten salt electrolysis. J Mater Cycles Waste Manag 20:1918–1922. https://doi.org/10.1007/s10163-017-0682-5

    Article  Google Scholar 

  8. Binnemans K, McGuiness P, Jones PT (2021) Rare-earth recycling needs market intervention. Nat Rev Mater 6:459–461. https://doi.org/10.1038/s41578-021-00308-w

    Article  Google Scholar 

  9. Shan Y, Liu Y, Li Y, Yang W (2020) A review on application of cerium-based oxides in gaseous pollutant purification. Sep Purif Technol 250:117181. https://doi.org/10.1016/j.seppur.2020.117181

    Article  Google Scholar 

  10. Niam AC, Liu Y-H, Wang Y-F, Chen S-W, Chang G-M, You S-J (2020) Recovery of neodymium from waste permanent magnets by hydrometallurgy using hollow fiber supported liquid membranes. Solvent Extr Res Dev Jpn 27:69–80. https://doi.org/10.15261/serdj.27.69

    Article  Google Scholar 

  11. Dey S, Dhal GC (2020) Cerium catalysts applications in carbon monoxide oxidations. Mater Sci Energy Technol 3:6–24. https://doi.org/10.1016/j.mset.2019.09.003

    Article  Google Scholar 

  12. Chauhan G, Pant KK, Nigam KDP (2013) Metal recovery from hydroprocessing spent catalyst: a green chemical engineering approach. Ind Eng Chem Res 52:16724–16736. https://doi.org/10.1021/ie4024484

    Article  Google Scholar 

  13. Alves Dias P, Bobba S, Carrara S, Plazzotta B (2020) The role of rare earth elements in wind energy and electric mobility. Publication Office of the European Union, Luxembourg

    Google Scholar 

  14. King A, Eggert R (2016) Annual report—August 2016. Critical Materials Institute, U S Department of Energy, Washington, DC

  15. Kim D, Powell L, Delmau LH, Peterson ES, Herchenroeder J, Bhave RR (2016) A supported liquid membrane system for the selective recovery of rare earth elements from neodymium-based permanent magnets. Sep Sci Technol 51:1716–1726. https://doi.org/10.1080/01496395.2016.1171782

    Article  Google Scholar 

  16. Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22. https://doi.org/10.1016/j.jclepro.2012.12.037

    Article  Google Scholar 

  17. Kim D, Powell LE, Delmau LH, Peterson ES, Herchenroeder J, Bhave RR (2015) Selective extraction of rare earth elements from permanent magnet scraps with membrane solvent extraction. Environ Sci Technol 49:9452–9459. https://doi.org/10.1021/acs.est.5b01306

    Article  Google Scholar 

  18. Fdl C-M, Buchaca MMdS, Fernández-Baeza J, Sánchez-Barba LF, Rodríguez AM, Alonso-Moreno C, Castro-Osma JA, Lara-Sánchez A (2021) Heteroscorpionate rare-earth catalysts for the low-pressure coupling reaction of CO2 and cyclohexene oxide. Organometallics 40:1503–1514. https://doi.org/10.1021/acs.organomet.1c00164

    Article  Google Scholar 

  19. Remeur C (2013) Rare earth elements and recycling possibilities. Library of the European Parliament

  20. Du X, Graedel TE (2011) Global in-use stocks of the rare earth elements: a first estimate. Environ Sci Technol 45:4096–4101. https://doi.org/10.1021/es102836s

    Article  Google Scholar 

  21. Chen Z (2011) Global rare earth resources and scenarios of future rare earth industry. J Rare Earths 29:1–6. https://doi.org/10.1016/S1002-0721(10)60401-2

    Article  Google Scholar 

  22. Mehr J, Haupt M, Skutan S, Morf L, Adrianto LR, Weibel G, Hellweg S (2021) The environmental performance of enhanced metal recovery from dry municipal solid waste incineration bottom ash. Waste Manag (Oxford) 119:330–341. https://doi.org/10.1016/j.wasman.2020.09.001

    Article  Google Scholar 

  23. Balaram V (2019) Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10:1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005

    Article  Google Scholar 

  24. Sadri F, Rashchi F, Amini A (2017) Hydrometallurgical digestion and leaching of Iranian monazite concentrate containing rare earth elements Th, Ce, La and Nd. Int J Miner Process 159:7–15. https://doi.org/10.1016/j.minpro.2016.12.003

    Article  Google Scholar 

  25. Polyakov EG, Sibilev AS (2015) Recycling rare-earth-metal wastes by pyrometallurgical methods. Metallurgist 59:368–373. https://doi.org/10.1007/s11015-015-0111-8

    Article  Google Scholar 

  26. Graedal TE (2011) Recycling rates of metals: a status report. International Panel on Sustainable Resource Management, Programme UNE,

  27. Rademaker JH, Kleijn R, Yang Y (2013) Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling. Environ Sci Technol 47:10129–10136. https://doi.org/10.1021/es305007w

    Article  Google Scholar 

  28. Chauhan G, Jadhao PR, Pant KK, Nigam KDP (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges & opportunities—a review. J Environ Chem Eng 6:1288–1304. https://doi.org/10.1016/j.jece.2018.01.032

    Article  Google Scholar 

  29. Yurramendi L, Gijsemans L, Forte F, Aldana JL, Río Cd, Binnemans K (2019) Enhancing rare-earth recovery from lamp phosphor waste. Hydrometallurgy 187:38–44. https://doi.org/10.1016/j.hydromet.2019.04.030

    Article  Google Scholar 

  30. Omodara L, Pitkäaho S, Turpeinen E-M, Saavalainen P, Oravisjärvi K, Keiski RL (2019) Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications—a review. J Clean Prod 236:117573. https://doi.org/10.1016/j.jclepro.2019.07.048

    Article  Google Scholar 

  31. Kim J-Y, Kim U-S, Byeon M-S, Kang W-K, Hwang K-T, Cho W-S (2011) Recovery of cerium from glass polishing slurry. J Rare Earths 29:1075–1078. https://doi.org/10.1016/S1002-0721(10)60601-1

    Article  Google Scholar 

  32. Reed DW, Fujita Y, Daubaras DL, Jiao Y, Thompson VS (2016) Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy 166:34–40. https://doi.org/10.1016/j.hydromet.2016.08.006

    Article  Google Scholar 

  33. Zhao Z, Qiu Z, Yang J, Lu S, Cao L, Zhang W, Xu Y (2017) Recovery of rare earth elements from spent fluid catalytic cracking catalysts using leaching and solvent extraction techniques. Hydrometallurgy 167:183–188. https://doi.org/10.1016/j.hydromet.2016.11.013

    Article  Google Scholar 

  34. Borra CR, Pontikes Y, Binnemans K, Gerven TV (2015) Leaching of rare earths from bauxite residue (red mud). Miner Eng 76:20–27. https://doi.org/10.1016/j.mineng.2015.01.005

    Article  Google Scholar 

  35. Maroufi S, Nekouei RK, Hossain R, Assefi M, Sahajwalla V (2018) Recovery of rare earth (i.e., La, Ce, Nd, and Pr) oxides from end-of-life Ni-MH battery via thermal isolation. ACS Sustain Chem Eng 6:11811–11818. https://doi.org/10.1021/acssuschemeng.8b02097

    Article  Google Scholar 

  36. Innocenzi V, Ferella F, Michelis ID, Vegliò F (2015) Treatment of fluid catalytic cracking spent catalysts to recover lanthanum and cerium: comparison between selective precipitation and solvent extraction. J Ind Eng Chem 24:92–97. https://doi.org/10.1016/j.jiec.2014.09.014

    Article  Google Scholar 

  37. Wang J, Xu Y, Wang L, Zhao L, Wang Q, Cui D, Long Z, Huang X (2017) Recovery of rare earths and aluminum from FCC catalysts manufacturing slag by stepwise leaching and selective precipitation. J Environ Chem Eng 5:3711–3718. https://doi.org/10.1016/j.jece.2017.07.018

    Article  Google Scholar 

  38. Ye S, Jing Y, Wang Y, Fei W (2017) Recovery of rare earths from spent FCC catalysts by solvent extraction using saponified 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA). J Rare Earths 35:716–722. https://doi.org/10.1016/S1002-0721(17)60968-2

    Article  Google Scholar 

  39. Leone S, Ferella F, Innocenzi V, Michelis ID, Veglio F (2018) Synthesis and characterization of zeolites from spent FCC catalysts. Chem Eng Trans 67:601–606. https://doi.org/10.3303/CET1867101

    Article  Google Scholar 

  40. Maidel M, Ponte MJJdS, Ponte HdA (2019) Recycling lanthanum from effluents of elektrokinetic treatment of FCC spent catalyst, using a selective precipitation technique. Sep Purif Technol 210:251–257. https://doi.org/10.1016/j.seppur.2018.08.001

    Article  Google Scholar 

  41. Lu G, Lu X, Liu P (2020) Recovery of rare earth elements from spent fluid catalytic cracking catalyst using hydrogen peroxide as a reductant. Miner Eng. https://doi.org/10.1016/j.mineng.2019.106104

    Article  Google Scholar 

  42. Vogt ETC, Weckhuysen BM (2015) Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem Soc Rev 44:7342–7370. https://doi.org/10.1039/C5CS00376H

    Article  Google Scholar 

  43. Borra C, Vlugt T, Yang Y, Offerman E (Year) Published. In: Proceedings of the 5th international slag valorisation symposium

  44. Scott K (2009) RECYCLING | Nickel-metal hydride batteries. Elsevier B.V, Amsterdam. https://doi.org/10.1016/B978-044452745-5.00401-9

    Book  Google Scholar 

  45. Wang J, Zhang Y, Yu L, Cui K, Fu T, Mao H (2022) Effective separation and recovery of valuable metals from waste Ni-based batteries: a comprehensive review. Chem Eng J 439:135767. https://doi.org/10.1016/j.cej.2022.135767

    Article  Google Scholar 

  46. Zhang P, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries. Hydrometallurgy 50:61–75. https://doi.org/10.1016/S0304-386X(98)00046-2

    Article  Google Scholar 

  47. Zhang P, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K (1999) Recovery of metal values from spent nickel–metal hydride rechargeable batteries. J Power Sources 77:116–122. https://doi.org/10.1016/S0378-7753(98)00182-7

    Article  Google Scholar 

  48. Nan J, Han D, Yang M, Cui M, Hou X (2006) Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. Hydrometallurgy 84:75–80. https://doi.org/10.1016/j.hydromet.2006.03.059

    Article  Google Scholar 

  49. Pietrelli L, Bellomo B, Fontana D, Montereali MR (2002) Rare earths recovery from NiMH spent batteries. Hydrometallurgy 66:136–139. https://doi.org/10.1016/S0304-386X(02)00107-X

    Article  Google Scholar 

  50. Hoogerstraete TV, Binnemans K (2014) Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl) phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chem 16:1594–1606. https://doi.org/10.1039/C3GC41577E

    Article  Google Scholar 

  51. Larsson K, Ekberg C, Ødegaard-Jensen A (2013) Using Cyanex 923 for selective extraction in a high concentration chloride medium on nickel metal hydride battery waste: part II: mixer–settler experiments. Hydrometallurgy 133:168–175. https://doi.org/10.1016/j.hydromet.2013.01.012

    Article  Google Scholar 

  52. Otsuki A, Dodbiba G, Shibayama A, Sadaki J, Mei G, Fujita T (2008) Separation of rare earth fluorescent powders by two-liquid flotation using organic solvents. Jpn J Appl Phys 47:5093. https://doi.org/10.1143/JJAP.47.5093

    Article  Google Scholar 

  53. Curtui M, Haiduc I (1992) Solvent extraction of lanthanum(III) and cerium(III) with dialkyldithiophosphoric acids. Separation from thorium(IV). J Radioanal Nucl Chem 164:91–101. https://doi.org/10.1007/BF02167968

    Article  Google Scholar 

  54. Krea M, Khalaf H (2000) Liquid–liquid extraction of uranium and lanthanides from phosphoric acid using a synergistic DOPPA–TOPO mixture. Hydrometallurgy 58:215–225. https://doi.org/10.1016/S0304-386X(00)00129-8

    Article  Google Scholar 

  55. Sinha S, Abhilash MP, Pandey BD (2016) Metallurgical processes for the recovery and recycling of lanthanum from various resources—a review. Hydrometallurgy 160:47–59. https://doi.org/10.1016/j.hydromet.2015.12.004

    Article  Google Scholar 

  56. Abhilash SS, Sinha MK, Pandey BD (2014) Extraction of lanthanum and cerium from Indian red mud. Int J Miner Process 127:70–73. https://doi.org/10.1016/j.minpro.2013.12.009

    Article  Google Scholar 

  57. Dabalà M, Armelao L, Buchberger A, Calliari I (2001) Cerium-based conversion layers on aluminum alloys. Appl Surf Sci 172:312–322. https://doi.org/10.1016/S0169-4332(00)00873-4

    Article  Google Scholar 

  58. Ambare DN, Ansari SA, Anitha M, Kandwal P, Singh DK, Singh H, Mohapatra PK (2013) Non-dispersive solvent extraction of neodymium using a hollow fiber contactor: mass transfer and modeling studies. J Membr Sci 446:106–112. https://doi.org/10.1016/j.memsci.2013.06.034

    Article  Google Scholar 

  59. Fishman T, Graedel TE (2019) Impact of the establishment of US offshore wind power on neodymium flows. Nat Sustainability 2:332–338. https://doi.org/10.1038/s41893-019-0252-z

    Article  Google Scholar 

  60. Gergoric M, Ekberg C, Steenari B-M, Retegan T (2017) Separation of heavy rare-earth elements from light rare-earth elements via solvent extraction from a neodymium magnet leachate and the effects of diluents. J Sustain Metall 3:601–610. https://doi.org/10.1007/s40831-017-0117-5

    Article  Google Scholar 

  61. Mokili B, Poitrenaud C (1996) Modelling of the extraction of neodymium and praseodymium nitrates from aqueous solutions containing a salting-out agent or nitric acid by tri-n-butylphosphate. Solvent Extr Ion Exch. https://doi.org/10.1080/07366299608918360

    Article  Google Scholar 

  62. Meng F, Li X, Shi L, Li Y, Gao F, Wei Y (2020) Selective extraction of scandium from bauxite residue using ammonium sulfate roasting and leaching process. Miner Eng 157:106561. https://doi.org/10.1016/j.mineng.2020.106561

    Article  Google Scholar 

  63. Zhou H, Li D, Tian Y, Chen Y (2008) Extraction of scandium from red mud by modified activated carbon and kinetics study. Rare Met 27:223–227. https://doi.org/10.1016/S1001-0521(08)60119-9

    Article  Google Scholar 

  64. Ochsenkühn-Petropulu M, Lyberopulu T, Parissakis G (1995) Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Anal Chim Acta 315:231–237. https://doi.org/10.1016/0003-2670(95)00309-N

    Article  Google Scholar 

  65. Tarn MD, Pamme N (2014) Microfluidics. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.05351-8

  66. Scott SM, Ali Z (2021) Fabrication methods for microfluidic devices: an overview. Micromachines. https://doi.org/10.3390/mi12030319

    Article  Google Scholar 

  67. Kumar U, Panda D, Biswas KG (2018) Non-lithographic copper-wire based fabrication of micro-fluidic reactors for biphasic flow applications. Chem Eng J 344:221–227. https://doi.org/10.1016/j.cej.2018.03.071

    Article  Google Scholar 

  68. Sirkar KK, Fane AG, Wang R, Wickramasinghe R (2015) Process intensification with selected membrane processes. Chem Eng Process Process Intensif 87:16–25. https://doi.org/10.1016/j.cep.2014.10.018

    Article  Google Scholar 

  69. Sharma L, Nigam KDP, Roy S (2017) Single phase mixing in coiled tubes and coiled flow inverters in different flow regimes. Chem Eng Sci 160:227–235. https://doi.org/10.1016/j.ces.2016.11.034

    Article  Google Scholar 

  70. Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nature 532:435–437. https://doi.org/10.1038/532435a

    Article  Google Scholar 

  71. Singh J, Srivastava V, Nigam KDP (2016) Novel membrane module for permeate flux augmentation and process intensification. Ind Eng Chem Res 55:3861–3870. https://doi.org/10.1021/acs.iecr.5b04865

    Article  Google Scholar 

  72. Baker RW (2012) Membrane technology and applications, 3rd edn. Wiley, New York

    Book  Google Scholar 

  73. Cichy W, Schlosser Š, Szymanowski J (2004) Extraction and pertraction of phenol through bulk liquid membranes. J Chem Technol Biotechnol 80:189–197. https://doi.org/10.1002/jctb.1178

    Article  Google Scholar 

  74. Gabelman A, Hwang S-T (1999) Hollow fiber membrane contactors. J Membr Sci 159:61–106. https://doi.org/10.1016/S0376-7388(99)00040-X

    Article  Google Scholar 

  75. López J, Reig M, Gibert O, Torres E, Ayora C, Cortina JL (2018) Application of nanofiltration for acidic waters containing rare earth elements: influence of transition elements, acidity and membrane stability. Desalination 430:33–44. https://doi.org/10.1016/j.desal.2017.12.033

    Article  Google Scholar 

  76. Elbashier E, Mussa A, Hafiz MA, Hawari AH (2021) Recovery of rare earth elements from waste streams using membrane processes: an overview. Hydrometallurgy 204:1–12. https://doi.org/10.1016/j.hydromet.2021.105706

    Article  Google Scholar 

  77. Virga E, Žvab K, Vos WMd (2021) Fouling of nanofiltration membranes based on polyelectrolyte multilayers: the effect of a zwitterionic final layer. J Membr Sci 620:118793. https://doi.org/10.1016/j.memsci.2020.118793

    Article  Google Scholar 

  78. Li Q, Elimelech M (2004) Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. Environ Sci Technol 38:4683–4693. https://doi.org/10.1021/es0354162

    Article  Google Scholar 

  79. Wang S, Ajji A, Guo S, Xiong C (2017) Preparation of microporous polypropylene/titanium dioxide composite membranes with enhanced electrolyte uptake capability via melt extruding and stretching. Polymers 9:110–122. https://doi.org/10.3390/polym9030110

    Article  Google Scholar 

  80. Wardani AK, Ariono D, Yespin Y, Sihotang DR, Wenten IG (2019) Preparation of hydrophilic polypropylene membrane by acid dipping technique. Mater Res Express 6:1–6. https://doi.org/10.1088/2053-1591/ab10cf

    Article  Google Scholar 

  81. Kim R, Cho H, Jeong J, Kim J, Lee S, Chung KW, Yoon H-S, Kim C-J (2020) Effect of sulfuric acid baking and caustic digestion on enhancing the recovery of rare earth elements from a refractory ore. Minerals 10:532. https://doi.org/10.3390/min10060532

    Article  Google Scholar 

  82. Xie F, Zhang TA, Dreisinger D, Doyle F (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 56:10–28. https://doi.org/10.1016/j.mineng.2013.10.021

    Article  Google Scholar 

  83. Chauhan G, Stein M, Seidel-Morgenstern A, Pant KK, Nigam KDP (2015) The thermodynamics and biodegradability of chelating agents upon metal extraction. Chem Eng Sci 137:768–785. https://doi.org/10.1016/j.ces.2015.07.028

    Article  Google Scholar 

  84. Yang F, Kubota F, Baba Y, Kamiya N, Gotoa M (2013) Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. J Hazard Mater 254–255:79–88. https://doi.org/10.1016/j.jhazmat.2013.03.026

    Article  Google Scholar 

  85. Wang K, Adidharma H, Radosz M, Wan P, Xu X, Russell CK, Tian H, Fan M, Yu J (2017) Recovery of rare earth elements with ionic liquids. Green Chem 19:4469–4493. https://doi.org/10.1039/c7gc02141k

    Article  Google Scholar 

  86. Laurino JP, Mustacato J, Huba ZJ (2019) Rare earth element recovery from acidic extracts of florida phosphate mining materials using chelating polymer 1-octadecene, polymer with 2,5-furandione, sodium salt. Minerals 9:1–10. https://doi.org/10.3390/min9080477

    Article  Google Scholar 

  87. Peppard DF, Mason GW, Driscoll WJ, Sironen RJ (1958) Acidic esters of orthophosphoric acid as selective extractants for metallic cations—tracer studies. J Inorg Nucl Chem 7:276–285. https://doi.org/10.1016/0022-1902(58)80078-0

    Article  Google Scholar 

  88. Mason GW, Schofer NL, Peppard DF (1970) The extraction of U(VI) and selected M(III) cations by bis neo-octyl phosphoric acid in two different hydrocarbon diluents. J Inorg Nucl Chem 32:3911–3922. https://doi.org/10.1016/0022-1902(70)80569-3

    Article  Google Scholar 

  89. Lee M-S, Lee J-Y, Kim J-S, Lee G-S (2005) Solvent extraction of neodymium ions from hydrochloric acid solution using PC88A and saponified PC88A. Sep Purif Technol 46:72–78. https://doi.org/10.1016/j.seppur.2005.04.014

    Article  Google Scholar 

  90. Devi NB, Nathsarma KC, Chakravortty V (1998) Separation and recovery of cobalt (II) and nickel (II) from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272. Hydrometallurgy 49:47–61. https://doi.org/10.1016/S0304-386X(97)00073-X

    Article  Google Scholar 

  91. Pei L, Wang L, Yu G (2012) Study on a novel flat renewal supported liquid membrane with D2EHPA and hydrogen nitrate for neodymium extraction. J Rare Earths 30:63–68. https://doi.org/10.1016/S1002-0721(10)60640-0

    Article  Google Scholar 

  92. Peppard DF, Mason GW, Maier JL, Driscoll WJ (1957) Fractional extraction of the lanthanides as their di-alkyl orthophosphates. J Inorg Nucl Chem 4:334–343. https://doi.org/10.1016/0022-1902(57)80016-5

    Article  Google Scholar 

  93. Prakorn R, Ura P (2003) Synergistic extraction and separation of mixture of lanthanum and neodymium by hollow fiber supported liquid membrane. Korean J Chem Eng 20:724–730. https://doi.org/10.1007/BF02706915

    Article  Google Scholar 

  94. Ramakul P, Mooncluen U, Yanachawakul Y, Leepipatpiboon N (2012) Mass transport modeling and analysis on the mutual separation of lanthanum(III) and cerium(IV) through a hollow fiber supported liquid membrane. J Ind Eng Chem 18:1606–1611. https://doi.org/10.1016/j.jiec.2012.02.020

    Article  Google Scholar 

  95. Wannachod T, Leepipatpiboon N, Pancharoen U, Phatanasri S (2015) Mass transfer and selective separation of neodymium ions via a hollow fiber supported liquid membrane using PC88A as extractant. J Ind Eng Chem 21:535–541. https://doi.org/10.1016/j.jiec.2014.03.016

    Article  Google Scholar 

  96. Patil CB, Ansari SA, Mohapatra PK, Natarajan V, Manchanda VK (2011) Non-dispersive solvent extraction and stripping of neodymium(III) using a hollow fiber contactor with TODGA as the extractant. Sep Sci Technol 46:765–773. https://doi.org/10.1080/01496395.2010.535589

    Article  Google Scholar 

  97. Banda R, Jeon H-S, Lee M-S (2011) Solvent extraction of Nd from chloride solution with individual and mixed extractants. J Korean Inst Resour Recycl 20:46–51. https://doi.org/10.7844/kirr.2011.20.5.046

    Article  Google Scholar 

  98. Morais CA, Ciminelli VST (2004) Process development for the recovery of high-grade lanthanum by solvent extraction. Hydrometallurgy 73:237–244. https://doi.org/10.1016/j.hydromet.2003.10.008

    Article  Google Scholar 

  99. Wannachod P, Chaturabul S, Pancharoen U, Lothongkum AW, Patthaveekongka W (2011) The effective recovery of praseodymium from mixed rare earths via a hollow fiber supported liquid membrane and its mass transfer related. J Alloys Compd 509:354–361. https://doi.org/10.1016/j.jallcom.2010.09.025

    Article  Google Scholar 

  100. Dahuron L, Cussler EL (1988) Protein extractions with hollow fibers. AIChE J 34:130–136. https://doi.org/10.1002/aic.690340115

    Article  Google Scholar 

  101. Saxena AK, Nigam KDP (1984) Coiled configuration for flow inversion and its effect on residence time distribution. AlChE J 30:363–368. https://doi.org/10.1002/aic.690300303

    Article  Google Scholar 

  102. Dean WR (1927) Note on the motion of fluid in a curved pipe. Philos Mag 4:208–223. https://doi.org/10.1080/14786440708564324

    Article  Google Scholar 

  103. Saxena AK, Nigam KDP (1986) Residence time distribution in straight and curved tubes. Encyclopedia of fluid mechanics. Gulf Publishing, Houston, TX, pp 675–762

    Google Scholar 

  104. Mridha M, Nigam KDP (2008) Coiled flow inverter as an inline mixer. Chem Eng Sci 63:1724–1732. https://doi.org/10.1016/j.ces.2007.10.028

    Article  Google Scholar 

  105. Soni S, Sharma L, Meena P, Roy S, Nigam KDP (2019) Compact coiled flow inverter for process intensification. Chem Eng Sci 193:312–324. https://doi.org/10.1016/j.ces.2018.09.008

    Article  Google Scholar 

  106. Ghogomu JN, Guigui C, Rouch JC, Clifton MJ, Aptel P (2001) Hollow-fiber membrane module design: comparison of different curved geometries with Dean vortices. J Membr Sci 181:71–80. https://doi.org/10.1016/S0376-7388(00)00364-1

    Article  Google Scholar 

  107. Ruiz-Ruiz F, López-Guajardo E, Vázquez-Villegas P, Angel-Chong MEd, Nigam KDP, Willson RC, Rito-Palomares M (2019) Continuous aqueous two-phase extraction of microalgal C-phycocyanin using a coiled flow inverter. Chem Eng Process Process Intensif. https://doi.org/10.1016/j.cep.2019.107554

    Article  Google Scholar 

  108. Gürsel IV, Kurt SK, Aalders J, Wang Q, Noël T, Nigam KDP, Kockmann N, Hessel V (2016) Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous flow liquid–liquid extraction processes. Chem Eng J 283:855–868. https://doi.org/10.1016/j.cej.2015.08.028

    Article  Google Scholar 

  109. Kurt SK, Gürsel IV, Hessel V, Nigam KDP, Kockmann N (2016) Liquid–liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications. Chem Eng J 284:764–777. https://doi.org/10.1016/j.cej.2015.08.099

    Article  Google Scholar 

  110. Asrami MR, Tran NN, Saien J, Hessel V (2020) Mass transfer characterization of ionic liquid solvents for extracting phenol from aqueous phase in a microscale coiled flow inverter. Ind Eng Chem Res 59:16427–16436. https://doi.org/10.1021/acs.iecr.0c02787

    Article  Google Scholar 

  111. Rossi D, Gargiulo L, Valitov G, Gavriilidis A, Mazzei L (2017) Experimental characterization of axial dispersionin coiled flow inverters. Chem Eng Res Des 120:159–170. https://doi.org/10.1016/j.cherd.2017.02.011

    Article  Google Scholar 

  112. Zhang L, Hessel V, Peng J, Wang Q, Zhang L (2017) Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter. Chem Eng J 307:1–8. https://doi.org/10.1016/j.cej.2016.08.062

    Article  Google Scholar 

  113. Jadhao P, Chauhan G, Pant KK, Nigam KDP (2016) Greener approach for the extraction of copper metal from electronic waste. Waste Manag 57:102–112. https://doi.org/10.1016/j.wasman.2015.11.023

    Article  Google Scholar 

  114. Chauhan G, Pant KK, Nigam KDP (2015) Chelation technology: a promising green approach for resource management and waste minimization. Environ Sci Processes Impacts 17:12–40. https://doi.org/10.1039/C4EM00559G

    Article  Google Scholar 

  115. Chauhan G, Pant KK, Nigam KDP (2013) Development of green technology for extraction of nickel from spent catalyst and its optimization using response surface methodology. Green Process Synth 2:259–271. https://doi.org/10.1515/gps-2013-0016

    Article  Google Scholar 

  116. Vuyyuru KR, Pant KK, Krishnan VV, Nigam KDP (2010) Recovery of nickel from spent industrial catalysts using chelating agents. Ind Eng Chem Res 49:2014–2024. https://doi.org/10.1021/ie901406e

    Article  Google Scholar 

  117. Goel S, Pant KK, Nigam KDP (2009) Extraction of nickel from spent catalyst using fresh and recovered EDTA. J Hazard Mater 171:253–261. https://doi.org/10.1016/j.jhazmat.2009.05.131

    Article  Google Scholar 

  118. Chauhan G, Pant KK, Nigam KDP (2012) Extraction of nickel from spent catalyst using biodegradable chelating agent EDDS. Ind Eng Chem Res 51:10354–10363. https://doi.org/10.1021/ie300580v

    Article  Google Scholar 

  119. Zhang J, Anawati J, Yao Y, Azimi G (2018) Aeriometallurgical extraction of rare earth elements from a NdFeB magnet utilizing supercritical fluids. ACS Sustain Chem Eng 6:16713–16725. https://doi.org/10.1021/acssuschemeng.8b03992

    Article  Google Scholar 

  120. Yao Y, Farac NF, Azimi G (2018) Supercritical fluid extraction of rare earth elements from nickel metal hydride battery. ACS Sustain Chem Eng 6:1417–1426. https://doi.org/10.1021/acssuschemeng.7b03803

    Article  Google Scholar 

  121. Martinis EM, Berton P, Wuilloud RG (2014) Ionic liquid-based microextraction techniques for trace-element analysis. TrAC, Trends Anal Chem 60:54–70. https://doi.org/10.1016/j.trac.2014.04.012

    Article  Google Scholar 

  122. Çelik İ, Kara D, Karadaş C, Fisher A, Hill SJ (2015) A novel ligandless-dispersive liquid–liquid microextraction method for matrix elimination and the preconcentration of rare earth elements from natural waters. Talanta 134:476–481. https://doi.org/10.1016/j.talanta.2014.11.063

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the Science and Engineering Research Board (SERB), Government of India for funding and supporting the research towards membrane-assisted extraction of lanthanum and cerium metals from the recyclable consumer scraps and placer deposits obtained from Odisha beach area in India under Project No. EMR/2017/004593.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan K. Agrahari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrahari, G.K., Vignesh, M.S. & Nigam, K.D.P. Novel devices for the extraction and recovery of rare-earth metals through recycling of waste. J Mater Cycles Waste Manag 26, 109–137 (2024). https://doi.org/10.1007/s10163-023-01862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01862-x

Keywords

Navigation