Skip to main content

Advertisement

Log in

Recovery of precious metals from e-wastes through conventional and phytoremediation treatment methods: a review and prediction

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

E-waste, also known as waste from electrical and electronic equipment, is a solid waste that accumulates quickly due to high demand driven by the market for replacing newer electrical and electronic products. The global e-waste generation is estimated to be between 53.6 million tons, and it is increasing by 3–5% per year. Metals make-up approximately 30% of e-waste, which contains precious elements Au, Ag, Cu, Pt, and other high-value elements, valued at USD 57 billion, which is driving the e-waste recycling industry. It is noteworthy that the recycling of precious elements from e-waste has emerged as a profitable enterprise in several parts of developing nations. E-waste contains 50–100 times higher levels of precious metals compared to natural ores, making it suitable for mining. E-waste recycling in developing nations, mostly occurs through the informal sector comprising manual collection, crushing, segregation and selling of precious elements, such as Au, Ag, Cu, Pb, Pt, and other rare elements (Nd, In, and Ga). The organized sector, on the other hand, mostly employs mechano-chemical methods, such as pyrometallurgy, hydrometallurgy, and bio-hydrometallurgy, which have serious environmental consequences. Both the informal and formal sectors of e-waste processing lead to the leaching of toxic elements into groundwater and soils. Owing to the lesser efficiency of greener technologies, such as phytoremediation and bioremediation, their use in precious metal extraction is very limited. However, this review explores several hyper-accumulating and tolerant plants viz. Brassica juncea and Berkheya coddii, which holds great potential in phytomining of precious metal from e-waste. Thus, the state of the art in precious metal extraction from e-waste as well as the advantages and disadvantages of different metal extraction technologies has been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hák T, Janoušková S, Moldan B (2016) Sustainable development goals: a need for relevant indicators. Ecol Indic 60:565–573. https://doi.org/10.1016/J.ECOLIND.2015.08.003

    Article  Google Scholar 

  2. IEA (2019) World Energy Outlook 2019–Analysis-IEA. https://www.iea.org/reports/world-energy-outlook-2019. Accessed 16 Oct 2022

  3. World Bank Group (2020) Minerals for climate action: the mineral intensity of the clean energy transition—CommDev. https://www.commdev.org/publications/minerals-for-climate-action-the-mineral-intensity-of-the-clean-energy-transition/. Accessed 16 Oct 2022

  4. The Greenpeace India (2007) Annual Report 2005–2006—Greenpeace India. https://www.greenpeace.org/india/en/publication/1019/annual-report-2005-2006/. Accessed 16 Oct 2022

  5. Widmer R, Oswald-Krapf H, Sinha-Khetriwal D et al (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458. https://doi.org/10.1016/J.EIAR.2005.04.001

    Article  Google Scholar 

  6. Parvez SM, Jahan F, Brune MN et al (2021) Health consequences of exposure to e-waste: an updated systematic review. Lancet Planet Heal 5:e905–e920. https://doi.org/10.1016/S2542-5196(21)00263-1

    Article  Google Scholar 

  7. Needhidasan S, Samuel M, Chidambaram R (2014) Electronic waste—an emerging threat to the environment of urban India. J Environ Heal Sci Eng 12:1–9. https://doi.org/10.1186/2052-336X-12-36/TABLES/3

    Article  Google Scholar 

  8. Tipre DR, Khatri BR, Thacker SC, Dave SR (2021) The brighter side of e-waste—a rich secondary source of metal. Environ Sci Pollut Res 28:10503–10518. https://doi.org/10.1007/s11356-020-12022-1

    Article  Google Scholar 

  9. Tuncuk A, Stazi V, Akcil A et al (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng 25:28–37. https://doi.org/10.1016/J.MINENG.2011.09.019

    Article  Google Scholar 

  10. Forti V, Balde CP, Kuehr R, Bel G (2020) The global E-waste monitor 2020: quantities, flows and the circular economy potential. 120

  11. Hazra A, Das S, Ganguly A et al (2019) Plasma arc technology: a potential solution toward waste to energy conversion and of GHGs mitigation. Waste Valoris Recycl. https://doi.org/10.1007/978-981-13-2784-1_19

    Article  Google Scholar 

  12. Wang J, Bai J, Xu J, Liang B (2009) Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J Hazard Mater 172:1100–1105. https://doi.org/10.1016/J.JHAZMAT.2009.07.102

    Article  Google Scholar 

  13. UNEP (2017) UN report: Time to seize opportunity, tackle challenge of e-waste. https://www.unep.org/news-and-stories/press-release/un-report-time-seize-opportunity-tackle-challenge-e-waste. Accessed 22 Oct 2022

  14. Jha MK, Kumar A, Kumar V, Lee JC (2011) Prospective scenario of E-waste recycling in India. TMS Annu Meet. https://doi.org/10.1002/9781118086391.CH10

    Article  Google Scholar 

  15. Wu Q, Leung JYS, Geng X et al (2015) Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Sci Total Environ 506–507:217–225. https://doi.org/10.1016/J.SCITOTENV.2014.10.121

    Article  Google Scholar 

  16. Phengsaart T, Ito M, Azuma A et al (2020) Jig separation of crushed plastics: the effects of particle geometry on separation efficiency. J Mater Cycles Waste Manag 22(3):787–800. https://doi.org/10.1007/S10163-019-00967-6

    Article  Google Scholar 

  17. Nnorom IC, Osibanjo O (2008) Electronic waste (e-waste): material flows and management practices in Nigeria. Waste Manag 28:1472–1479. https://doi.org/10.1016/J.WASMAN.2007.06.012

    Article  Google Scholar 

  18. Dutta D, Rautela R, Gujjala LK, Kundu D, Sharma P, Tembhare M, Kumar S (2022) A review on recovery processes of metals from E-waste: a green perspective. Sci Total Environ 859:160391

    Article  Google Scholar 

  19. Thakur P, Kumar S (2021) Evaluation of e-waste status, management strategies, and legislations. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03383-2

    Article  Google Scholar 

  20. Brigden K (2005) Recycling of electronic wastes in China & India: workplace & environmental contamination electronic wastes contamination

  21. Ackah M (2017) Informal E-waste recycling in developing countries: review of metal(loid)s pollution, environmental impacts and transport pathways. Environ Sci Pollut Res 24(31):24092–24101. https://doi.org/10.1007/S11356-017-0273-Y

    Article  Google Scholar 

  22. Kumar A, Saini HS, Kumar S (2018) Bioleaching of gold and silver from waste printed circuit boards by Pseudomonas balearica SAE1 isolated from an e-waste recycling facility. Curr Microbiol 75:194–201. https://doi.org/10.1007/S00284-017-1365-0

    Article  Google Scholar 

  23. Thakur P, Kumar S (2020) Metallurgical processes unveil the unexplored “sleeping mines” e- waste: a review. Environ Sci Pollut Res 27(26):32359–32370. https://doi.org/10.1007/S11356-020-09405-9

    Article  Google Scholar 

  24. Natarajan G, Ting YP (2014) Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour Technol 152:80–85. https://doi.org/10.1016/J.BIORTECH.2013.10.108

    Article  Google Scholar 

  25. Zhang Y, Liu S, Xie H et al (2012) Current status on leaching precious metals from waste printed circuit boards. Procedia Environ Sci 16:560–568. https://doi.org/10.1016/J.PROENV.2012.10.077

    Article  Google Scholar 

  26. Singer DA, Berger VI, Moring BC (2008) Porphyry copper deposits of the world: database, map, and grade and tonnage models. https://pubs.usgs.gov/of/2005/1060/. Accessed 16 Oct 2022

  27. Balde CP, Forti V, Gray V et al (2017) The global e-waste monitor 2017

  28. Hunt AJ, Farmer TJ, Clark JH (2013) Chapter 1: Elemental sustainability and the importance of scarce element recovery. pp 1–28. https://doi.org/10.1039/9781849737340-00001

  29. Brown TJ, Shaw R, Bide T et al (2011) World Mineral Production

  30. Salazar K (2013) Mineral commodity summaries 2013. In: Mineral Commodity Summaries

  31. Kumar A, Holuszko M, Espinosa DCR (2017) E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl 122:32–42. https://doi.org/10.1016/j.resconrec.2017.01.018

    Article  Google Scholar 

  32. Jadhao PR, Ahmad E, Pant KK, Nigam KDP (2022) Advancements in the field of electronic waste recycling: critical assessment of chemical route for generation of energy and valuable products coupled with metal recovery. Sep Purif Technol. https://doi.org/10.1016/J.SEPPUR.2022.120773

    Article  Google Scholar 

  33. Tembhare SP, Bhanvase BA, Barai DP, Dhoble SJ (2021) E-waste recycling practices: a review on environmental concerns, remediation and technological developments with a focus on printed circuit boards. Springer, Netherlands

    Google Scholar 

  34. Debnath B, Chowdhury R, Ghosh SK (2018) Sustainability of metal recovery from E-waste. Front Environ Sci Eng 12:1–12. https://doi.org/10.1007/s11783-018-1044-9

    Article  Google Scholar 

  35. Rautela R, Arya S, Vishwakarma S et al (2021) E-waste management and its effects on the environment and human health. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.145623

    Article  Google Scholar 

  36. Kim EY, Kim MS, Lee JC, Pandey BD (2011) Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. J Hazard Mater 198:206–215. https://doi.org/10.1016/J.JHAZMAT.2011.10.034

    Article  Google Scholar 

  37. Ismail H, Hanafiah MM (2021) Evaluation of e-waste management systems in Malaysia using life cycle assessment and material flow analysis. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.127358

    Article  Google Scholar 

  38. Luhar S, Luhar I (2019) Potential application of E-wastes in construction industry: a review. Constr Build Mater 203:222–240. https://doi.org/10.1016/j.conbuildmat.2019.01.080

    Article  MATH  Google Scholar 

  39. Adanu SK, Gbedemah SF, Attah MK (2020) Challenges of adopting sustainable technologies in e-waste management at Agbogbloshie, Ghana. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04548

    Article  Google Scholar 

  40. Kumar S, Agarwal N, Anand SK, Rajak BK (2022) E-waste management in India: a strategy for the attainment of SDGs 2030. Mater Today Proc 60:811–814. https://doi.org/10.1016/J.MATPR.2021.09.296

    Article  Google Scholar 

  41. Ahirwar R, Tripathi AK (2021) E-waste management: a review of recycling process, environmental and occupational health hazards, and potential solutions. Environ Nanotechnology Monit Manag. https://doi.org/10.1016/j.enmm.2020.100409

    Article  Google Scholar 

  42. Mudali UK, Patil M, Saravanabhavan R, Saraswat VK (2021) Review on E-Waste recycling: part I—a prospective urban mining opportunity and challenges. Trans Indian Natl Acad Eng 6:547–568. https://doi.org/10.1007/s41403-021-00216-z

    Article  Google Scholar 

  43. Andeobu L, Wibowo S, Grandhi S (2021) An assessment of e-waste generation and environmental management of selected countries in Africa, Europe and North America: a systematic review. Sci Total Environ 792:148078. https://doi.org/10.1016/J.SCITOTENV.2021.148078

    Article  Google Scholar 

  44. Andeobu L, Wibowo S, Grandhi S (2021) A systematic review of E-waste generation and environmental management of Asia Pacific countries. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph18179051

    Article  Google Scholar 

  45. Ghosh B, Ghosh MK, Parhi P et al (2015) Waste printed circuit boards recycling: an extensive assessment of current status. J Clean Prod 94:5–19. https://doi.org/10.1016/j.jclepro.2015.02.024

    Article  Google Scholar 

  46. Gunarathne V, Gunatilake SR, Wanasinghe ST et al (2019) Phytoremediation for E-waste contaminated sites. Handb Electron Waste Manag Int Best Pract Case Stud. https://doi.org/10.1016/B978-0-12-817030-4.00005-X

    Article  Google Scholar 

  47. Mir S, Dhawan N (2022) A comprehensive review on the recycling of discarded printed circuit boards for resource recovery. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2021.106027

    Article  Google Scholar 

  48. Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Manag 32:979–990. https://doi.org/10.1016/J.WASMAN.2011.12.002

    Article  Google Scholar 

  49. Gu W, Bai J, Feng Y et al (2019) Biotechnological initiatives in E-waste management: recycling and business opportunities. Electron Waste Manag Treat Technol. https://doi.org/10.1016/B978-0-12-816190-6.00009-1

    Article  Google Scholar 

  50. Alabi OA, Adeoluwa YM, Huo X et al (2021) Environmental contamination and public health effects of electronic waste: an overview. J Environ Heal Sci Eng 19:1209. https://doi.org/10.1007/S40201-021-00654-5

    Article  Google Scholar 

  51. Yuan J, Chen L, Chen D et al (2008) Elevated serum polybrominated diphenyl ethers and thyroid-stimulating hormone associated with lymphocytic micronuclei in Chinese workers from an E-waste dismantling site. Environ Sci Technol 42:2195–2200. https://doi.org/10.1021/ES702295F

    Article  Google Scholar 

  52. Johns LE, Ferguson KK, Soldin OP et al (2015) Urinary phthalate metabolites in relation to maternal serum thyroid and sex hormone levels during pregnancy: a longitudinal analysis. Reprod Biol Endocrinol. https://doi.org/10.1186/1477-7827-13-4

    Article  Google Scholar 

  53. Walker CL (2016) Minireview: epigenomic plasticity and vulnerability to EDC exposures. Mol Endocrinol 30:848–855. https://doi.org/10.1210/ME.2016-1086

    Article  Google Scholar 

  54. Song Q, Li J (2015) A review on human health consequences of metals exposure to e-waste in China. Environ Pollut 196:450–461. https://doi.org/10.1016/J.ENVPOL.2014.11.004

    Article  Google Scholar 

  55. Xu P, Lou X, Ding G et al (2015) Effects of PCBs and PBDEs on thyroid hormone, lymphocyte proliferation, hematology and kidney injury markers in residents of an e-waste dismantling area in Zhejiang, China. Sci Total Environ 536:215–222. https://doi.org/10.1016/J.SCITOTENV.2015.07.025

    Article  Google Scholar 

  56. Gangwar C, Choudhari R, Chauhan A et al (2019) Assessment of air pollution caused by illegal e-waste burning to evaluate the human health risk. Environ Int 125:191–199. https://doi.org/10.1016/J.ENVINT.2018.11.051

    Article  Google Scholar 

  57. Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256. https://doi.org/10.1016/J.JHAZMAT.2008.02.001

    Article  Google Scholar 

  58. Rucevska I, Nellemann C, Isarin N et al (2015) Waste crime—waste risks: gaps in meeting the global waste challenge

  59. Agarwal R, Ranjan R, Sarkar P (2003) Scrapping the hi-tech myth: computer waste in India. Toxics Link, New Delhi

  60. Golev A, Schmeda-Lopez DR, Smart SK et al (2016) Where next on e-waste in Australia? Waste Manag 58:348–358. https://doi.org/10.1016/J.WASMAN.2016.09.025

    Article  Google Scholar 

  61. Yaashikaa PR, Priyanka B, Senthil Kumar P et al (2022) A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach. Chemosphere 287:132230. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132230

    Article  Google Scholar 

  62. Chauhan G, Jadhao PR, Pant KK, Nigam KDP (2018) Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges & opportunities—a review. J Environ Chem Eng 6:1288–1304. https://doi.org/10.1016/J.JECE.2018.01.032

    Article  Google Scholar 

  63. Hagelüken C (2008) Urban mining- Opportunities & challenges to recover scarce and valuable metals from electronic devices. In: 32nd int precious met inst annu conf 2008 precious met technol dur volatile Times, vol 1, pp 255–278

  64. Holgersson S, Steenari BM, Björkman M, Cullbrand K (2018) Analysis of the metal content of small-size Waste Electric and Electronic Equipment (WEEE) printed circuit boards—part 1: internet routers, mobile phones and smartphones. Resour Conserv Recycl 133:300–308. https://doi.org/10.1016/J.RESCONREC.2017.02.011

    Article  Google Scholar 

  65. Lang J, Payne J, Rebagliati M et al (2007) The super-giant Pebble copper-gold-molybdenum porphyry deposit, southwest Alaska. Arizona Geol Soc Ores Orogenes 120–121

  66. Kaliyavaradhan SK, Prem PR, Ambily PS, Mo KH (2022) Effective utilization of e-waste plastics and glasses in construction products—a review and future research directions. Resour Conserv Recycl 176:105936. https://doi.org/10.1016/j.resconrec.2021.105936

    Article  Google Scholar 

  67. Ashiq A, Kulkarni J, Vithanage M (2019) Hydrometallurgical recovery of metals from e-waste. Elsevier Inc., Amsterdam

    Book  Google Scholar 

  68. Arya S, Patel A, Kumar S, Pau-Loke S (2021) Urban mining of obsolete computers by manual dismantling and waste printed circuit boards by chemical leaching and toxicity assessment of its waste residues. Environ Pollut 283:117033. https://doi.org/10.1016/j.envpol.2021.117033

    Article  Google Scholar 

  69. Choi JW, Bediako JK, Kang JH et al (2021) In-situ microwave-assisted leaching and selective separation of Au(III) from waste printed circuit boards in biphasic aqua regia-ionic liquid systems. Sep Purif Technol 255:117649. https://doi.org/10.1016/J.SEPPUR.2020.117649

    Article  Google Scholar 

  70. Martins TAG, Caldas MPK, de Moraes VT et al (2021) Recovering metals from motherboard and memory board waste through sulfuric leaching. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.106789

    Article  Google Scholar 

  71. Wang C, Wang H, Cao Y (2019) Waste printed circuit boards as novel potential engineered catalyst for catalytic degradation of orange II. J Clean Prod 221:234–241

    Article  Google Scholar 

  72. Rene ER, Sethurajan M, Kumar Ponnusamy V et al (2021) Electronic waste generation, recycling and resource recovery: Technological perspectives and trends. J Hazard Mater 416:125664. https://doi.org/10.1016/j.jhazmat.2021.125664

    Article  Google Scholar 

  73. Zhang Y, Jiang H, Wang H, Wang C (2020) Flotation separation of acrylonitrile-butadiene-styrene and polystyrene in WEEE based on oxidation of active sites. Miner Eng 146:106131

    Article  Google Scholar 

  74. Chu H, Qian C, Tian B et al (2022) Pyrometallurgy coupling bioleaching for recycling of waste printed circuit boards. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2021.106018

    Article  Google Scholar 

  75. Anderson CG (2016) Pyrometallurgy. Ref Modul Mater Sci Mater Eng. https://doi.org/10.1016/B978-0-12-803581-8.03609-2

    Article  Google Scholar 

  76. Ma E (2019) Recovery of waste printed circuit boards through pyrometallurgy. Electron Waste Manag Treat Technol. https://doi.org/10.1016/B978-0-12-816190-6.00011-X

    Article  Google Scholar 

  77. Amato A, Becci A, Beolchini F (2020) Sustainable recovery of Cu, Fe and Zn from end-of-life printed circuit boards. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2020.104792

    Article  Google Scholar 

  78. Avvannavar SM, Mutnuru RK, Shrihari S (2011) Survival and sustainability. Surviv Sustain. https://doi.org/10.1007/978-3-540-95991-5

    Article  Google Scholar 

  79. Li B, Wang X, Wei Y et al (2018) Extraction of copper from copper and cadmium residues of zinc hydrometallurgy by oxidation acid leaching and cyclone electrowinning. Miner Eng 128:247–253. https://doi.org/10.1016/j.mineng.2018.09.007

    Article  Google Scholar 

  80. Hsu E, Barmak K, West AC, Park AH (2019) Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies. Green Chem 21(5):919–936

    Article  Google Scholar 

  81. Ukiwe LN, Allinor JI, Ejele AE et al (2008) Chemical and biological leaching methods to remove heavy metals from sewage sludge: a review. J Adv Chem 4:509–517

    Article  Google Scholar 

  82. Wang C, Sun R, Xing B (2021) Copper recovery from waste printed circuit boards by the flotation-leaching process optimized using response surface methodology. J Air Waste Manag Assoc 71(12):1483–1491

    Article  Google Scholar 

  83. Jing-ying L, Xiu-li X, Wen-quan L (2012) Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Manag 32:1209–1212. https://doi.org/10.1016/j.wasman.2012.01.026

    Article  Google Scholar 

  84. Lee H, Molstad E, Mishra B (2018) Recovery of gold and silver from secondary sources of electronic waste processing by Thiourea leaching. JOM 70:1616–1621. https://doi.org/10.1007/s11837-018-2965-2

    Article  Google Scholar 

  85. Ha VH, Lee J, Jeong J et al (2010) Thiosulfate leaching of gold from waste mobile phones. J Hazard Mater 178:1115–1119. https://doi.org/10.1016/j.jhazmat.2010.01.099

    Article  Google Scholar 

  86. Rudnik E, Pierzynka M, Handzlik P (2016) Ammoniacal leaching and recovery of copper from alloyed low-grade e-waste. J Mater Cycles Waste Manag 18:318–328. https://doi.org/10.1007/s10163-014-0335-x

    Article  Google Scholar 

  87. Jeon S, Tabelin CB, Park I et al (2020) Ammonium thiosulfate extraction of gold from printed circuit boards (PCBs) of end-of-life mobile phones and its recovery from pregnant leach solution by cementation. Hydrometallurgy 191:105214. https://doi.org/10.1016/j.hydromet.2019.105214

    Article  Google Scholar 

  88. Yin JF, Zhan SH, Xu H (2014) Comparison of leaching processes of gold and copper from printed circuit boards of waste mobile phone. Adv Mater Res 955–959:2743–2746. https://doi.org/10.4028/www.scientific.net/AMR.955-959.2743

    Article  Google Scholar 

  89. Cui H, Anderson C (2020) Hydrometallurgical treatment of waste printed circuit boards: bromine leaching. Metals (Basel) 10:1–18. https://doi.org/10.3390/met10040462

    Article  Google Scholar 

  90. Sahin M, Akcil A, Erust C et al (2015) A potential alternative for precious metal recovery from E-waste: iodine leaching. Sep Sci Technol 50:2587–2595. https://doi.org/10.1080/01496395.2015.1061005

    Article  Google Scholar 

  91. Kuyucak N, Akcil A (2013) Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng 50–51:13–29. https://doi.org/10.1016/J.MINENG.2013.05.027

    Article  Google Scholar 

  92. Behnamfard A, Salarirad MM, Veglio F (2013) Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manag 33:2354–2363. https://doi.org/10.1016/J.WASMAN.2013.07.017

    Article  Google Scholar 

  93. Tripathi A, Kumar M, Sau DC et al (2012) Leaching of gold from the waste mobile phone printed circuit boards (PCBs) with ammonium thiosulphate. Int J Metall Eng 1:17–21. https://doi.org/10.5923/j.ijmee.20120102.02

    Article  Google Scholar 

  94. Awasthi AK, Zeng X, Li J (2016) Comparative examining and analysis of E-waste recycling in typical developing and developed countries. Procedia Environ Sci 35:676–680. https://doi.org/10.1016/j.proenv.2016.07.065

    Article  Google Scholar 

  95. Zhang J, Zhang Y, Richmond W, Wang HP (2010) Processing technologies for gold-telluride ores. Int J Miner Metall Mater 17:1–10. https://doi.org/10.1007/S12613-010-0101-6

    Article  Google Scholar 

  96. Oishi T, Koyama K, Alam S et al (2007) Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions. Hydrometallurgy 89:82–88. https://doi.org/10.1016/J.HYDROMET.2007.05.010

    Article  Google Scholar 

  97. Xiu FR, Qi Y, Zhang FS (2015) Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Manag 41:134–141. https://doi.org/10.1016/J.WASMAN.2015.02.020

    Article  Google Scholar 

  98. Altansukh B, Haga K, Ariunbolor N et al (2016) Leaching and adsorption of gold from waste printed circuit boards using iodine-iodide solution and activated carbon. Eng J 20:29–40. https://doi.org/10.4186/ej.2016.20.4.29

    Article  Google Scholar 

  99. Torrinha MBQLF, Bacelo HAM, Santos SCR et al (2020) Uptake and recovery of gold from simulated hydrometallurgical liquors by adsorption on pine bark tannin resin. Water (Switzerland) 12:1–18. https://doi.org/10.3390/w12123456

    Article  Google Scholar 

  100. Inamuddin, Rangreez TA, Asiri AM (2019) Applications of ion exchange materials in chemical and food industries. Springer International Publishing, Cham

    Book  Google Scholar 

  101. Song Q, Liu Y, Zhang L, Xu Z (2021) Selective electrochemical extraction of copper from multi-metal e-waste leaching solution and its enhanced recovery mechanism. J Hazard Mater 407:124799. https://doi.org/10.1016/J.JHAZMAT.2020.124799

    Article  Google Scholar 

  102. Smolinski T, Wawszczak D, Deptula A et al (2017) Solvent extraction of Cu, Mo, V, and U from leach solutions of copper ore and flotation tailings. J Radioanal Nucl Chem 314:69–75. https://doi.org/10.1007/s10967-017-5383-y

    Article  Google Scholar 

  103. Kubota F, Kono R, Yoshida W et al (2019) Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Sep Purif Technol 214:156–161. https://doi.org/10.1016/J.SEPPUR.2018.04.031

    Article  Google Scholar 

  104. Dhanunjaya M, Singh KK, Morrison CA, Love JB (2021) Recycling copper and gold from e-waste by a two-stage leaching and solvent extraction process. Sep Purif Technol 263:118400

    Article  Google Scholar 

  105. Ismail NA, Aziz MAA, Yunus MYM et al (2019) Selection of extractant in rare earth solvent extraction system: a review. Int J Recent Technol Eng 8:728–743

    Google Scholar 

  106. Salman AD, Juzsakova T, Mohsen S et al (2022) Scandium recovery methods from mining, metallurgical extractive industries, and industrial wastes. Materials 15:2376

    Article  Google Scholar 

  107. Correa MMJ, Silvas FPC, Aliprandini P et al (2018) Separation of copper from a leaching solution of printed circuit boards by using solvent extraction with D2EHPA. Braz J Chem Eng 35:919–930

    Article  Google Scholar 

  108. Paul Chen J, Lim LL (2005) Recovery of precious metals by an electrochemical deposition method. Chemosphere 60:1384–1392

    Article  Google Scholar 

  109. O’Connor MP, Coulthard RM, Plata DL (2018) Electrochemical deposition for the separation and recovery of metals using carbon nanotube-enabled filters. Environ Sci Water Res Technol 4:58–66

    Article  Google Scholar 

  110. Goc K, Kluczka J, Benke G et al (2021) Application of ion exchange for recovery of noble metals. Minerals. https://doi.org/10.3390/min11111188

    Article  Google Scholar 

  111. Botelho Junior AB, Vicente ADA, Espinosa DCR, Tenório JAS (2019) Recovery of metals by ion exchange process using chelating resin and sodium dithionite. J Mater Res Technol 8:4464–4469. https://doi.org/10.1016/J.JMRT.2019.07.059

    Article  Google Scholar 

  112. Takaluoma EM, Pikkarainen T, Kemppainen K (2018) Adsorption and desorption of metals onto reusable adsorbent. In: 11th ICARD | IMWA | MWD Conf – “Risk to Oppor, pp 923–928

  113. Torrinha MBQLF, Bacelo HAM, Santos SCR et al (2020) Uptake and recovery of gold from simulated hydrometallurgical liquors by adsorption on pine bark tannin resin. Water 12:3456. https://doi.org/10.3390/W12123456

    Article  Google Scholar 

  114. Grad O, Ciopec M, Negrea A et al (2021) Precious metals recovery from aqueous solutions using a new adsorbent material. Sci Reports 11:1–14. https://doi.org/10.1038/s41598-021-81680-z

    Article  Google Scholar 

  115. Sadeghi N, Ek A (2016) Selective extraction of gold (III) from hydrochloric acid–chlorine gas leach solutions of copper anode slime by tri-butyl phosphate (TBP). Trans Nonferrous Met Soc China 26:3258–3265. https://doi.org/10.1016/S1003-6326(16)64459-X

    Article  Google Scholar 

  116. Raiguel S, Gijsemans L, Van Den Bossche A et al (2020) Solvent extraction of gold(III) with diethyl carbonate. ACS Sustain Chem Eng 8:13713–13723. https://doi.org/10.1021/acssuschemeng.0c04008

    Article  Google Scholar 

  117. Grad O, Ciopec M, Negrea A et al (2021) Precious metals recovery from aqueous solutions using a new adsorbent material. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-81680-z

    Article  Google Scholar 

  118. Vakilchap F, Mousavi SM, Shojaosadati SA (2016) Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process. Bioresour Technol 218:991–998. https://doi.org/10.1016/J.BIORTECH.2016.07.059

    Article  Google Scholar 

  119. Islam A, Ahmed T, Awual MR et al (2020) Advances in sustainable approaches to recover metals from e-waste—a review. J Clean Prod. https://doi.org/10.1016/J.JCLEPRO.2019.118815

    Article  Google Scholar 

  120. Xiang Y, Wu P, Zhu N et al (2010) Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 184:812–818. https://doi.org/10.1016/J.JHAZMAT.2010.08.113

    Article  Google Scholar 

  121. Lee J, Pandey BD (2012) Bio-processing of solid wastes and secondary resources for metal extraction—a review. Waste Manag 32:3–18. https://doi.org/10.1016/J.WASMAN.2011.08.010

    Article  Google Scholar 

  122. Işıldar A, van de Vossenberg J, Rene ER et al (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag 57:149–157. https://doi.org/10.1016/J.WASMAN.2015.11.033

    Article  Google Scholar 

  123. Brandl H, Lehmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94:14–17. https://doi.org/10.1016/J.HYDROMET.2008.05.016

    Article  Google Scholar 

  124. Arshadi M, Mousavi SM, Rasoulnia P (2016) Enhancement of simultaneous gold and copper recovery from discarded mobile phone PCBs using Bacillus megaterium: RSM based optimization of effective factors and evaluation of their interactions. Waste Manag 57:158–167. https://doi.org/10.1016/J.WASMAN.2016.05.012

    Article  Google Scholar 

  125. Pradhan JK, Kumar S (2012) Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manag Res 30:1151–1159. https://doi.org/10.1177/0734242X12437565

    Article  Google Scholar 

  126. Natarajan G, Tay SB, Yew WS, Ting YP (2015) Engineered strains enhance gold biorecovery from electronic scrap. Miner Eng 75:32–37. https://doi.org/10.1016/J.MINENG.2015.01.002

    Article  Google Scholar 

  127. Natarajan G, Ting YP (2015) Gold biorecovery from e-waste: an improved strategy through spent medium leaching with pH modification. Chemosphere 136:232–238. https://doi.org/10.1016/J.CHEMOSPHERE.2015.05.046

    Article  Google Scholar 

  128. Tran CD, Lee JC, Pandey BD et al (2011) Bacterial cyanide generation in presence of metal ions (Na+, Mg2+, Fe2+, Pb2+) and gold bioleaching from waste PCBs. J Chem Eng Jpn 44:1107120229–1107120229. https://doi.org/10.1252/JCEJ.10WE232

    Article  Google Scholar 

  129. Li J, Liang C, Ma C (2014) Bioleaching of gold from waste printed circuit boards by Chromobacterium violaceum. J Mater Cycles Waste Manag 17:529–539. https://doi.org/10.1007/S10163-014-0276-4

    Article  Google Scholar 

  130. Ruan J, Zhu X, Qian Y, Hu J (2014) A new strain for recovering precious metals from waste printed circuit boards. Waste Manag 34:901–907. https://doi.org/10.1016/J.WASMAN.2014.02.014

    Article  Google Scholar 

  131. Kaur P, Sharma S, Albarakaty FM et al (2022) Biosorption and bioleaching of heavy metals from electronic waste varied with microbial genera. Sustainability 14:935

    Article  Google Scholar 

  132. Desmarais M, Pirade F, Zhang J, Rene ER (2020) Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: current trends and perspectives. Bioresource Technology Reports 11:100526

    Article  Google Scholar 

  133. Sethurajan M, Gaydardzhiev S (2021) Bioprocessing of spent lithium ion batteries for critical metals recovery—a review. Resour Conserv Recycl 165:105225

    Article  Google Scholar 

  134. Lu Y, Xu Z (2016) Precious metals recovery from waste printed circuit boards: a review for current status and perspective. Resour Conserv Recycl 113:28–39. https://doi.org/10.1016/J.RESCONREC.2016.05.007

    Article  Google Scholar 

  135. Natarajan K (2018) Biotechnology of Metals: Principles, Recovery Methods and Environmental Concerns - K.A. Natarajan - Google Books. https://books.google.com.my/books?hl=en&lr=&id=uOJgDwAAQBAJ&oi=fnd&pg=PP1&dq=Natarajan+K+A+(2018).+Biotechnology+of+metals.+&ots=KeLEb8S4Ru&sig=iZAJFYITVRHTvSOPbvhrQlfSB1E&redir_esc=y#v=onepage&q=Natarajan K A (2018). Biotechnology of metals. Accessed 16 Oct 2022

  136. Ilyas S, Anwar MA, Niazi SB, Afzal Ghauri M (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88:180–188. https://doi.org/10.1016/J.HYDROMET.2007.04.007

    Article  Google Scholar 

  137. Baniasadi M, Vakilchap F, Bahaloo-Horeh N et al (2019) Advances in bioleaching as a sustainable method for metal recovery from e-waste: a review. J Ind Eng Chem 76:75–90. https://doi.org/10.1016/j.jiec.2019.03.047

    Article  Google Scholar 

  138. Mäkinen J, Bachér J, Kaartinen T et al (2015) The effect of flotation and parameters for bioleaching of printed circuit boards. Miner Eng 75:26–31. https://doi.org/10.1016/J.MINENG.2015.01.009

    Article  Google Scholar 

  139. Xia MC, Wang YP, Peng TJ et al (2017) Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. J Biosci Bioeng 123:714–721. https://doi.org/10.1016/J.JBIOSC.2016.12.017

    Article  Google Scholar 

  140. Liang G, Mo Y, Zhou Q (2010) Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzyme Microb Technol 47:322–326. https://doi.org/10.1016/J.ENZMICTEC.2010.08.002

    Article  Google Scholar 

  141. Xin Y, Guo X, Chen S et al (2016) Bioleaching of valuable metals Li Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J Clean Prod 116:249–258. https://doi.org/10.1016/J.JCLEPRO.2016.01.001

    Article  Google Scholar 

  142. Niu Z, Zou Y, Xin B et al (2014) Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere 109:92–98. https://doi.org/10.1016/J.CHEMOSPHERE.2014.02.059

    Article  Google Scholar 

  143. Xin B, Jiang W, Aslam H et al (2012) Bioleaching of zinc and manganese from spent Zn–Mn batteries and mechanism exploration. Bioresour Technol 106:147–153. https://doi.org/10.1016/J.BIORTECH.2011.12.013

    Article  Google Scholar 

  144. Niu Z, Huang Q, Wang J et al (2015) Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10%. J Hazard Mater 298:170–177. https://doi.org/10.1016/J.JHAZMAT.2015.05.038

    Article  Google Scholar 

  145. Beolchini F, Fonti V, Dell’Anno A et al (2012) Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manag 32:949–956. https://doi.org/10.1016/J.WASMAN.2011.10.014

    Article  Google Scholar 

  146. Yang T, Xu Z, Wen J, Yang L (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97:29–32. https://doi.org/10.1016/J.HYDROMET.2008.12.011

    Article  Google Scholar 

  147. Brandl H, Faramarzi MA (2006) Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology 4:93–97. https://doi.org/10.1016/s1672-2515(07)60244-9

    Article  Google Scholar 

  148. Madrigal-Arias JE, Argumedo-Delira R, Alarcón A et al (2015) Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains. Brazilian J Microbiol 46:707–713. https://doi.org/10.1590/S1517-838246320140256

    Article  Google Scholar 

  149. Naseem Akthar M, Sivarama Sastry K, Maruthi Mohan P (1995) Biosorption of silver ions by processed Aspergillus niger biomass. Biotechnol Lett 17:551–556. https://doi.org/10.1007/BF00132027

    Article  Google Scholar 

  150. Creamer NJ, Baxter-Plant VS, Henderson J et al (2006) Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotechnol Lett 28:1475–1484. https://doi.org/10.1007/S10529-006-9120-9

    Article  Google Scholar 

  151. Huerta-Rosas B, Cano-Rodríguez I, Gamiño-Arroyo Z et al (2020) Aerobic processes for bioleaching manganese and silver using microorganisms indigenous to mine tailings. World J Microbiol Biotechnol. https://doi.org/10.1007/S11274-020-02902-6

    Article  Google Scholar 

  152. Mitovski A, Štrbac N, Živković D et al (2014) 4th international symposium on environmental and material flow management

  153. Kamberović Ž, Korać M, Ivšić D et al (2009) Hydrometallurgical process for extraction of metals from electronic waste-part I: material characterization and process option selection. Metal Metall 15:231–243. https://doi.org/10.30544/382

    Article  Google Scholar 

  154. Kaya M (2016) Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag 57:64–90. https://doi.org/10.1016/J.WASMAN.2016.08.004

    Article  Google Scholar 

  155. Kamberovic Z, Korac M, Ranitovic M (2011) Hydrometallurgical process for extraction of metals from eectronic waste-part II: development of the processes for the recovery of copper from printed circuit boards (PCB). Metalurgija-MJoM 17:139–149

    Google Scholar 

  156. Sahle-Demessie E, Mezgebe B, Dietrich J et al (2021) Material recovery from electronic waste using pyrolysis: emissions measurements and risk assessment. J Environ Chem Eng 9:104943. https://doi.org/10.1016/J.JECE.2020.104943

    Article  Google Scholar 

  157. Dinh T, Dobo Z, Kovacs H (2022) Phytomining of noble metals—a review. Chemosphere 286:131805. https://doi.org/10.1016/j.chemosphere.2021.131805

    Article  Google Scholar 

  158. Wilson-Corral V, Anderson C, Rodriguez-Lopez M et al (2011) Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Miner Eng 24:1488–1494. https://doi.org/10.1016/J.MINENG.2011.07.014

    Article  Google Scholar 

  159. Kafle A, Timilsina A, Gautam A et al (2022) Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv 8:100203. https://doi.org/10.1016/j.envadv.2022.100203

    Article  Google Scholar 

  160. Oladoye PO, Olowe OM, Asemoloye MD (2022) Phytoremediation technology and food security impacts of heavy metal contaminated soils: a review of literature. Chemosphere 288:132555. https://doi.org/10.1016/j.chemosphere.2021.132555

    Article  Google Scholar 

  161. Sheoran V, Sheoran A, Poonia P (2013) Phytomining of gold: a review. J Geochemical Explor 128:42–50. https://doi.org/10.1016/J.GEXPLO.2013.01.008

    Article  Google Scholar 

  162. Earle S (2019) 1.6 Geological Time

  163. Mungall JE, Naldrett AJ (2008) Ore deposits of the platinum-group elements. Elements 4:253–258. https://doi.org/10.2113/GSELEMENTS.4.4.253

    Article  Google Scholar 

  164. Zientek ML, Loferski PJ, Parks HL et al (2017) Platinum-group elements. Prof Pap. https://doi.org/10.3133/PP1802N

    Article  Google Scholar 

  165. Anderson CW, Brooks R, Stewart R, Simcock R (1998) Harvesting a crop of gold in plants. Nature 395:556. https://doi.org/10.1038/26886

    Article  Google Scholar 

  166. Gluhar S, Kaurin A, Lestan D (2020) Soil washing with biodegradable chelating agents and EDTA: technological feasibility, remediation efficiency and environmental sustainability. Chemosphere 257:127226. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127226

    Article  Google Scholar 

  167. Ng CC, Boyce AN, Abas MR et al (2019) Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal–contaminted soil. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7573-2

    Article  Google Scholar 

  168. Pinto ISS, Neto IFF, Soares HMVM (2014) Biodegradable chelating agents for industrial, domestic, and agricultural applications—a review. Environ Sci Pollut Res 21:11893–11906. https://doi.org/10.1007/S11356-014-2592-6

    Article  Google Scholar 

  169. Lamb AE, Anderson CWN, Haverkamp RG (2001) The Induced Accumulation Of Gold In The Plants Brassica juncea, Berkheya coddii and Chicory

  170. Anderson C, Moreno F, Meech J (2005) A field demonstration of gold phytoextraction technology. Miner Eng 18:385–392. https://doi.org/10.1016/J.MINENG.2004.07.002

    Article  Google Scholar 

  171. González-Valdez E, Alarcón A, Ferrera-Cerrato R et al (2018) Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds. Ecotoxicol Environ Saf 154:180–186. https://doi.org/10.1016/J.ECOENV.2018.02.055

    Article  Google Scholar 

  172. Haverkamp RG, Marshall AT, Van Agterveld D (2007) Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo. J Nanoparticle Res 9:697–700. https://doi.org/10.1007/S11051-006-9198-Y

    Article  Google Scholar 

  173. Msuya FA, Brooks RR, Anderson CWN (2000) Chemically-induced uptake of gold by root crops: its significance for phytomining. Gold Bull 33:134–137. https://doi.org/10.1007/BF03215491

    Article  Google Scholar 

  174. Piccinin RCR, Ebbs SD, Reichman SM et al (2007) A screen of some native Australian flora and exotic agricultural species for their potential application in cyanide-induced phytoextraction of gold. Miner Eng 20:1327–1330. https://doi.org/10.1016/J.MINENG.2007.07.005

    Article  Google Scholar 

  175. Aquan HM (2015) Phytoextraction of Palladium and Gold from Broken Hill Gossan. pp 13–16

  176. Harris AT, Bali R (2007) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanoparticle Res 10:691–695. https://doi.org/10.1007/S11051-007-9288-5

    Article  Google Scholar 

  177. Borovička J, Řanda Z, Jelínek E et al (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res 111:1339–1344. https://doi.org/10.1016/j.mycres.2007.08.015

    Article  Google Scholar 

  178. Krisnayanti BD, Anderson CWN, Sukartono S et al (2016) Phytomining for artisanal gold mine tailings management. Minerals. https://doi.org/10.3390/MIN6030084

    Article  Google Scholar 

  179. Harumain ZAS, Parker HL, Muñoz García A et al (2017) Toward financially viable phytoextraction and production of plant-based palladium catalysts. Environ Sci Technol 51:2992–3000. https://doi.org/10.1021/ACS.EST.6B04821/ASSET/IMAGES/LARGE/ES-2016-04821G_0006.JPEG

    Article  Google Scholar 

  180. Kinska K, Kowalska J (2019) Comparison of Platinum, Rhodium, and Palladium bioaccumulation by Sinapis alba and their influence on phytochelatin synthesisin plant tissues. Polish J Environ Stud 28:1735–1740. https://doi.org/10.15244/PJOES/89507

    Article  Google Scholar 

  181. Kothny EL (1979) Palladium in plant ash. Plant Soil 53(4):547–550. https://doi.org/10.1007/BF02140726

    Article  Google Scholar 

  182. Nemutandani T, Dutertre D, Chimuka L et al (2007) The potential of Berkheya coddii for phytoextraction of nickel, platinum, and palladium contaminated sites. Toxicol Environ Chem 88:175–185. https://doi.org/10.1080/02772240600585842

    Article  Google Scholar 

  183. Walton, Dylan (2002) The phytoextraction of gold and palladium from mine tailings: this thesis is presented in fulfilment of the requirements for the degree of Master of Philosophy

  184. Lamb AE, Anderson CWN, Haverkamp RG (2001) The extraction of gold from plants and its application to phytomining

  185. Prayoga I, Putra RA (2020) Hydroponic technology in agriculture industry. IOP Conf Ser Mater Sci Eng 879:012130. https://doi.org/10.1088/1757-899X/879/1/012130

    Article  Google Scholar 

  186. Khan MA, Ullah N, Khan T et al (2019) Phytoremediation of electronic waste: a mechanistic overview and role of plant secondary metabolites. 233–252. https://doi.org/10.1007/978-3-030-26615-8_16

  187. Kumar P (2015) Rhizoremediation of E-Waste Heavy Metals using Potential Plant Species A Dissertation Submitted to Central University of Gujarat School of Environment and Sustainable Development Central University of Gujarat. https://doi.org/10.13140/RG.2.2.35050.88007

  188. Worku A, Tefera N, Kloos H, Benor S (2018) Bioremediation of brewery wastewater using hydroponics planted with vetiver grass in Addis Ababa, Ethiopia. Bioresour Bioprocess 5:1–12. https://doi.org/10.1186/S40643-018-0225-5/FIGURES/3

    Article  Google Scholar 

  189. Davamani V, Indhu Parameshwari C, Arulmani S et al (2021) Hydroponic phytoremediation of paperboard mill wastewater by using vetiver (Chrysopogon zizanioides). J Environ Chem Eng 9:105528. https://doi.org/10.1016/J.JECE.2021.105528

    Article  Google Scholar 

  190. Sinha S, Singh S, Mallick S (2007) Comparative growth response of two varieties of Vigna radiata L. (var. PDM 54 and var. NM 1) grown on different tannery sludge applications: effects of treated wastewater and ground water used for irrigation. Environ Geochemistry Heal 30:407–422. https://doi.org/10.1007/S10653-007-9125-X

    Article  Google Scholar 

  191. Falk A, Pop O, Dopeux J, Marsavina L (2022) Assessment of strains produced by thermal expansion in printed circuit boards. Materials (Basel). https://doi.org/10.3390/ma15113916

    Article  Google Scholar 

  192. Adak T, Kumar G, Chakravarty NVK et al (2013) Biomass and biomass water use efficiency in oilseed crop (Brassica juncea L.) under semi-arid microenvironments. Biomass Bioenerg 51:154–162. https://doi.org/10.1016/J.BIOMBIOE.2013.01.021

    Article  Google Scholar 

  193. Masud MH, Akram W, Ahmed A et al (2019) Towards the effective E-waste management in Bangladesh: a review. Environ Sci Pollut Res 26:1250–1276. https://doi.org/10.1007/s11356-018-3626-2

    Article  Google Scholar 

  194. Bizzo WA, Figueiredo RA, De Andrade VF (2014) Characterization of printed circuit boards for metal and energy recovery after milling and mechanical separation. Materials (Basel) 7:4555. https://doi.org/10.3390/MA7064555

    Article  Google Scholar 

  195. Jia LP, Huang JJ, Ma ZL et al (2020) Research and development trends of hydrometallurgy: an overview based on Hydrometallurgy literature from 1975 to 2019. Trans Nonferrous Met Soc China (English Ed 30:3147–3160. https://doi.org/10.1016/S1003-6326(20)65450-4

  196. Ding Y, Zhang S, Liu B et al (2019) Recovery of precious metals from electronic waste and spent catalysts: a review. Resour Conserv Recycl 141:284–298. https://doi.org/10.1016/j.resconrec.2018.10.041

    Article  Google Scholar 

  197. Ankit SL, Kumar V et al (2021) Electronic waste and their leachates impact on human health and environment: global ecological threat and management. Environ Technol Innov 24:102049. https://doi.org/10.1016/J.ETI.2021.102049

    Article  Google Scholar 

  198. Shahrabi-Farahani M, Yaghmaei S, Mousavi SM, Amiri F (2014) Bioleaching of heavy metals from a petroleum spent catalyst using Acidithiobacillus thiooxidans in a slurry bubble column bioreactor. Sep Purif Technol 132:41–49. https://doi.org/10.1016/J.SEPPUR.2014.04.039

    Article  Google Scholar 

  199. Asghari I, Mousavi SM, Amiri F, Tavassoli S (2013) Bioleaching of spent refinery catalysts: a review. J Ind Eng Chem 19:1069–1081. https://doi.org/10.1016/J.JIEC.2012.12.005

    Article  Google Scholar 

  200. Islam A, Swaraz AM, Teo SH et al (2021) Advances in physiochemical and biotechnological approaches for sustainable metal recovery from e-waste: a critical review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.129015

    Article  Google Scholar 

  201. Harikrushnan B, Shreyass G, Hemant G, Pandimadevi M (2016) Recovery of metals from printed circuit boards (PCBS) using a combination of hydrometallurgical and biometallurgical processes. Int J Environ Res 10:511–518. https://doi.org/10.22059/IJER.2016.59679

    Article  Google Scholar 

  202. Chu H, Qian C, Tian B et al (2022) Pyrometallurgy coupling bioleaching for recycling of waste printed circuit boards. Resour Conserv Recycl 178:106018. https://doi.org/10.1016/J.RESCONREC.2021.106018

    Article  Google Scholar 

  203. Asghari I, Mousavi SM, Amiri F, Tavassoli S (2013) Bioleaching of spent refinery catalysts: a review. J Ind Eng Chem 19(4):1069–1081

    Article  Google Scholar 

  204. Osman NA, Othman N, Mohammad R et al (2018) Life cycle assessment study for managing electronic waste using landfill technology. Int J Civ Eng Technol 9:542–549

    Google Scholar 

  205. Othman N, Mohd Sidek L, Ahmad Basri NE et al (2009) Electronic plastic waste management in Malaysia: the potential of waste to energy conversion. In: ICEE 2009—Proceeding 2009 3rd Int Conf Energy Environ Adv Towar Glob Sustain, pp 337–342. https://doi.org/10.1109/ICEENVIRON.2009.5398623

  206. Kazancoglu Y, Ozkan-Ozen YD, Mangla SK, Ram M (2020) Risk assessment for sustainability in e-waste recycling in circular economy. Clean Technol Environ Policy. https://doi.org/10.1007/s10098-020-01901-3

    Article  Google Scholar 

  207. Santaolalla A, Lens PNL, Barona A et al (2021) Metal extraction and recovery from mobile phone PCBs by a combination of bioleaching and precipitation processes. Minerals. https://doi.org/10.3390/min11091004

    Article  Google Scholar 

Download references

Acknowledgements

The authors (K, SM) are thankful to the Director NBRI for providing necessary financial support (OLP0102) and infrastructure. The authors (NHZ, CCN) are thankful to Xiamen University Malaysia for providing the necessary support. The MS was subjected to Ethical checking through the “Ethical clearance committee”, upon scrutiny the MS has been allotted a “CSIR-NBRI_MS/2022/01/10” as identification number.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuck Chuan Ng or Shekhar Mallick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulkernain, N.H., Basant, N., Ng, C.C. et al. Recovery of precious metals from e-wastes through conventional and phytoremediation treatment methods: a review and prediction. J Mater Cycles Waste Manag 25, 2726–2752 (2023). https://doi.org/10.1007/s10163-023-01717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01717-5

Keywords

Navigation