Skip to main content
Log in

Characterization of Cu2+ adsorption for eco-hydroxyapatite derived from limestone sludge via hydrothermal synthesis

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This study developed a novel approach to the hydrothermal synthesis of eco-hydroxyapatite (eco-HPA) from recycled limestone sludge for the removal of Cu2+ from aqueous solutions. The resulting eco-HPA was characterized using X-ray fluorescence, thermal field emission scanning electron microscope, X-ray powder diffraction analysis, and Brunauer–Emmett–Teller surface area measurements. Under a hydrothermal temperature of 120 °C and Ca/P molar ratio of 1, this study obtained the nitrogen adsorption isotherm and desorption curves indicative of hydroxyapatite. Based on the IUPAC classification system, these are the type-IV adsorption isotherm curves of a mesoporous structure with an H3-type hysteresis loop. The same sample achieved an adsorption capacity of 210 mg/g. The adsorption kinetics closely fit the pseudo-second-order kinetic model (R2 = 0.9990–1.000). Adsorption isotherms presented the strongest correlation with the Langmuir model (R2 = 0.97–0.99), exceeding that of the Freundlich model (R2 = 0.91–0.98). Taken together, these results demonstrate that the proposed eco-HAP is a viable low-cost environmentally friendly adsorbent with broad applicability for the removal of heavy metals from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available from the corresponding author upon request.

References

  1. Amin MN, Khan K, Saleem MU, Khurram N, Niazi MUK (2017) Aging and curing temperature effects on compressive strength of mortar containing lime stone quarry dust and industrial granite sludge. Materials 10(6):642. https://doi.org/10.3390/ma10060642

    Article  Google Scholar 

  2. Mageed AA, AbdelHaffez GS (2012) Utilization of limestone dust in brick making. JES J Eng Sci 40(3):913–922. https://doi.org/10.21608/jesaun.2012.114423

    Article  Google Scholar 

  3. Felekoglu B (2007) Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resour Conserv Recycl 51(4):770–791. https://doi.org/10.1016/j.resconrec.2006.12.004

    Article  Google Scholar 

  4. Maheswaran S, Ramesh Kumar V, Bhuvaneshwari B, Palani GS, Iyer NR (2011) Studies on lime sludge for partial replacement of cement. Appl Mech Mater 71:1015–1019. https://doi.org/10.4028/www.scientific.net/AMM.71-78.1015

    Article  Google Scholar 

  5. Turgut P (2008) Properties of masonry blocks produced with waste limestone sawdust and glass powder. Constr Build Mater 22(7):1422–1427. https://doi.org/10.1016/j.conbuildmat.2007.04.008

    Article  Google Scholar 

  6. Pellera FM, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang JY, Gidarakos E (2012) Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manage 96(1):35–42. https://doi.org/10.1016/j.jenvman.2011.10.010

    Article  Google Scholar 

  7. Semerciöz AS, Göğüş F, Celekli A, Bozkurt H (2017) Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu (II). J Clean Prod 165:599–610. https://doi.org/10.1016/j.jclepro.2017.07.159

    Article  Google Scholar 

  8. Jung KW, Lee SY, Choi JW, Lee YJ (2019) A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: adsorption behavior and mechanisms for the removal of copper (II) from aqueous media. Chem Eng J 369:529–541. https://doi.org/10.1016/j.cej.2019.03.102

    Article  Google Scholar 

  9. Mushtaq M, Bhatti HN, Iqbal M, Noreen S (2019) Eriobotrya japonica seed biocomposite efficiency for copper adsorption: isotherms, kinetics, thermodynamic and desorption studies. J Environ Manage 176:21–33. https://doi.org/10.1016/j.jenvman.2016.03.013

    Article  Google Scholar 

  10. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  Google Scholar 

  11. Wang YH, Lin SH, Juang RS (2003) Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. J Hazard Mater 102(2–3):291–302. https://doi.org/10.1016/S0304-3894(03)00218-8

    Article  Google Scholar 

  12. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709–6724. https://doi.org/10.1016/j.biortech.2008.01.036

    Article  Google Scholar 

  13. Kurniawan TA, Chan GY, Lo WH, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118(1–2):83–98. https://doi.org/10.1016/j.cej.2006.01.015

    Article  Google Scholar 

  14. Galil N, Rebhun M (1990) Primary chemical treatment minimizing dependence on bioprocess in small treatment plants. Water Sci Technol 22(3–4):203–210. https://doi.org/10.2166/wst.1990.0202

    Article  Google Scholar 

  15. Ye Y, Yang J, Jiang W, Kang J, Hu Y, Ngo HH, Liu Y (2018) Fluoride removal from water using a magnesia-pullulan composite in a continuous fixed-bed column. J Environ Manage 206:929–937. https://doi.org/10.1016/j.jenvman.2017.11.081

    Article  Google Scholar 

  16. Yu S, Wang X, Liu Y, Chen Z, Wu Y, Liu Y, Pang H, Song G, Chen J, Wang X (2019) Efficient removal of uranium (VI) by layered double hydroxides supported nanoscale zero-valent iron: a combined experimental and spectroscopic studies. Chem Eng J 365:51–59. https://doi.org/10.1016/j.cej.2019.02.024

    Article  Google Scholar 

  17. Apiratikul R, Pavasant P (2008) Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chem Eng J 144(2):245–258. https://doi.org/10.1016/j.cej.2008.01.038

    Article  Google Scholar 

  18. Bhattacharyya KG, Gupta SS (2008) Influence of acid activation on adsorption of Ni (II) and Cu (II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chem Eng J 136(1):1–13. https://doi.org/10.1016/j.cej.2007.03.005

    Article  Google Scholar 

  19. Al-Ghouti MA, Khraisheh MA, Tutuji M (2004) Flow injection potentiometric stripping analysis for study of adsorption of heavy metal ions onto modified diatomite. Chem Eng J 104(1–3):83–91. https://doi.org/10.1016/j.cej.2004.07.010

    Article  Google Scholar 

  20. Šljivić M, Smičiklas I, Pejanović S, Plećaš I (2009) Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Appl Clay Sci 43(1):33–40. https://doi.org/10.1016/j.clay.2008.07.009

    Article  Google Scholar 

  21. Feng Y, Gong JL, Zeng GM, Niu QY, Zhang HY, Niu CG, Deng JH, Yan M (2010) Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J 162(2):487–494. https://doi.org/10.1016/j.cej.2010.05.049

    Article  Google Scholar 

  22. Lusvardi G, Malavasi G, Menabue L, Saladini M (2002) Removal of cadmium ion by means of synthetic hydroxyapatite. Waste Manage 22(8):853–857. https://doi.org/10.1016/S0956-053X(02)00078-8

    Article  Google Scholar 

  23. Chaturvedi PK, Seth CS, Misra V (2006) Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite). Chemosphere 64(7):1109–1114. https://doi.org/10.1016/j.chemosphere.2005.11.077

    Article  Google Scholar 

  24. Hernández-Cocoletzi H, Salinas RA, Águila-Almanza E, Rubio-Rosas E, Chai WS, Chew KW, Mariscal-Hernández C, Show PL (2020) Natural hydroxyapatite from fishbone waste for the rapid adsorption of heavy metals of aqueous effluent. Environ Technol Innov 20:101109. https://doi.org/10.1016/j.eti.2020.101109

    Article  Google Scholar 

  25. Smičiklas I, Dimović S, Plećaš I, Mitrić M (2006) Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res 40(12):2267–2274. https://doi.org/10.1016/j.watres.2006.04.031

    Article  Google Scholar 

  26. Sheha RR (2007) Sorption behavior of Zn (II) ions on synthesized hydroxyapatites. J Colloid Interface Sci 310(1):18–26. https://doi.org/10.1016/j.jcis.2007.01.047

    Article  Google Scholar 

  27. Corami A, Mignardi S, Ferrini V (2007) Copper and zinc decontamination from single-and binary-metal solutions using hydroxyapatite. J Hazard Mater 146(1–2):164–170. https://doi.org/10.1016/j.jhazmat.2006.12.003

    Article  Google Scholar 

  28. Ayodele O, Olusegun SJ, Oluwasina OO, Okoronkwo EA, Olanipekun EO, Mohallem ND, Guimarães WG, de M Gomes BLF, de O Souza G, Duarte HA (2021) Experimental and theoretical studies of the adsorption of Cu and Ni ions from wastewater by hydroxyapatite derived from eggshells. Environ. Nanotechnol Monit Manag 15:100439. https://doi.org/10.1016/j.enmm.2021.100439

  29. Wang YY, Liu YX, Lu HH, Yang RQ, Yang SM (2018) Competitive adsorption of Pb (II), Cu (II), and Zn (II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. J Solid State Chem 261:53–61. https://doi.org/10.1016/j.jssc.2018.02.010

    Article  Google Scholar 

  30. Wang H, Yan K, Xing H, Chen J, Lu R (2021) Effective removal of Cu2+ from aqueous solution by synthetic abalone shell hydroxyapatite microspheres adsorbent. Environ Technol Innov 23:101663. https://doi.org/10.1016/j.eti.2021.101663

    Article  Google Scholar 

  31. Chen Y, Li M, Li Y, Liu Y, Chen Y, Li H, Li L, Xu F, Jiang H, Chen L (2021) Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: adsorption behavior and mechanisms. Bioresour Technol 321:124413. https://doi.org/10.1016/j.biortech.2020.124413

    Article  Google Scholar 

  32. Iqbal A, Sattar H, Haider R, Munir S (2019) Synthesis and characterization of pure phase zeolite 4A from coal fly ash. J Clean Prod 219:258–267. https://doi.org/10.1016/j.jclepro.2019.02.066

    Article  Google Scholar 

  33. Farzadi A, Bakhshi F, Hashjin MS, Eydivand MA, Osman NA (2014) Magnesium incorporated hydroxyapatite: synthesis and structural properties characterization. Ceram Int 40(4):6021–6029. https://doi.org/10.1016/j.ceramint.2013.11.051

    Article  Google Scholar 

  34. Zhang X, Vecchio KS (2007) Hydrothermal synthesis of hydroxyapatite rods. J Cryst Growth 308(1):133–140. https://doi.org/10.1016/j.jcrysgro.2007.07.059

    Article  Google Scholar 

  35. Liu W, Qiana G, Liu L, Zhang B, Fan X (2018) A simple method to controlled synthesis of nano hydroxyapatite in different particle size. Mater Lett 217(15):177–180. https://doi.org/10.1016/j.matlet.2018.01.079

    Article  Google Scholar 

  36. Mohan N, Palangadan R, Fernandez FB, Varma H (2018) Preparation of hydroxyapatite porous scaffold from a ‘coral-like’ synthetic inorganic precursor for use as a bone substitute and a drug delivery vehicle. Mater Sci Eng C 92:329–337. https://doi.org/10.1016/j.msec.2018.06.064

    Article  Google Scholar 

  37. Feng G, Cheng X, Xie D, Wang K, Zhang B (2016) Fabrication and characterization of nano prism-like hydroxyapatite coating on porous titanium substrate by combined biomimetic-hydrothermal method. Mater Lett 163:134–137. https://doi.org/10.1016/j.matlet.2015.10.063

    Article  Google Scholar 

  38. Zhang G, Chen J, Yang S, Yu Q, Wang Z, Zhang Q (2011) Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method. Mater Lett 65:572–574. https://doi.org/10.1016/j.matlet.2010.10.078

    Article  Google Scholar 

  39. Arfa BAEB, Salvado IMM, Frade JR, Pullar RC (2016) Fast route for synthesis of stoichiometric hydroxyapatite by employing the Taguchi method. Mater Des 109:547–555. https://doi.org/10.1016/2Fj.matdes.2016.07.083

    Article  Google Scholar 

  40. Xia X, Shen J, Cao F, Wang C, Tang M, Zhang Q, Wei S (2019) A facile synthesis of hydroxyapatite for effective removal strontium ion. J Hazard Mater 368:326–335. https://doi.org/10.1016/j.jhazmat.2019.01.040

    Article  Google Scholar 

  41. Sabu U, Logesh G, Rashad M, Joy A, Balasubramanian M (2019) Microwave assisted synthesis of biomorphic hydroxyapatite. Ceram Int 45(6):6718–6722. https://doi.org/10.1016/j.ceramint.2018.12.161

    Article  Google Scholar 

  42. Wei W, Sun R, Jin Z, Cui J, Wei Z (2014) Hydroxyapatite–gelatin nanocomposite as a novel adsorbent for nitrobenzene removal from aqueous solution. Appl Surf Sci 292:1020–1029. https://doi.org/10.1016/j.apsusc.2013.12.127

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Technology of Taiwan for supporting this research financially (Contract No. MOST-110-2221-E-197-021-MY3).

Author information

Authors and Affiliations

Authors

Contributions

Y-WL: Writing—Review & Editing, Supervision. Sheng-Yuan Peng: Writing—original draft. Methodology. Conceptualization. W-HL: Supervision, Validation. Y-YL: Writing—original draft. Conceptualization. Formal analysis. M-JH: Validation. Investigation. K-LL: Resources, writing-commenting and editing. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Kae-Long Lin.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YW., Peng, SY., Lee, WH. et al. Characterization of Cu2+ adsorption for eco-hydroxyapatite derived from limestone sludge via hydrothermal synthesis. J Mater Cycles Waste Manag 25, 1069–1081 (2023). https://doi.org/10.1007/s10163-023-01593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01593-z

Keywords

Navigation