Skip to main content
Log in

Sustainable red ceramic block: recycling of a sewage sludge as raw material

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Sewage sludge (SS) is a residue resulting from wastewater treatment, which is widely increasing due to population growth and economic development. Currently, there is a strong interest in finding feasible options for recycling SS in alternative applications like civil construction. The high-water content, as well as the presence of organic matter and hazardous compounds in SS, are the main barriers to its large-scale recycling. A possible alternative is using SS to produce red-ceramics elements, replacing clay by SS without affecting the performance in relation to the conventional ceramics. This research evaluated the rheology (i.e., plasticity) of clay blends produced with different contents of SS (from 0 to 20 wt% dry bases) in the fresh state, as well as leaching and solubility tests and their mineralogical, microstructural and mechanical properties. Results showed that the laboratory-scale blocks produced with up to 5 wt% SS had negligible environmental risk, with mechanical performance, aesthetic, and physical features equivalent to those of the control mix. SS contents above 5 wt% led a reduction in mechanical performance and susceptibility to efflorescence formation. Therefore, SS can be successfully recycled in the red ceramic industry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be avaliable on request.

References

  1. Cusidó JA, Cremades LV (2012) Environmental effects of using clay bricks produced with sewage sludge: leachability and toxicity studies. Waste Manag 32:1202–1208. https://doi.org/10.1016/j.wasman.2011.12.024

    Article  Google Scholar 

  2. Urban RC, de Isaac R, L, (2018) WTP and WWTP sludge management: a case study in the metropolitan area of Campinas, southeastern Brazil. Environ Monit Assess. https://doi.org/10.1007/s10661-018-6972-0

    Article  Google Scholar 

  3. Zhang Q, Hu J, Lee DJ et al (2017) Sludge treatment: current research trends. Bioresour Technol 243:1159–1172. https://doi.org/10.1016/j.biortech.2017.07.070

    Article  Google Scholar 

  4. Yang G, Zhang G, Wang H (2015) Current state of sludge production, management, treatment and disposal in China. Water Res 78:60–73. https://doi.org/10.1016/j.watres.2015.04.002

    Article  Google Scholar 

  5. Gao N, Kamran K, Quan C, Williams PT (2020) Thermochemical conversion of sewage sludge: a critical review. Prog Energy Combust Sci 79:100843. https://doi.org/10.1016/j.pecs.2020.100843

    Article  Google Scholar 

  6. Shi S, Xu G, Yu H, Zhang Z (2018) Strategies of valorization of sludge from wastewater treatment. J Chem Technol Biotechnol 93:936–944. https://doi.org/10.1002/jctb.5548

    Article  Google Scholar 

  7. Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods—a review. Renew Sustain Energy Rev 12:116–140. https://doi.org/10.1016/j.rser.2006.05.014

    Article  Google Scholar 

  8. Slim JA, Wakefield RW (1991) Utilisation of sewage sludge in the manufacture of clay bricks. Water SA 17:197–202

    Google Scholar 

  9. Zhou J, Li T, Zhang Q et al (2013) Direct-utilization of sewage sludge to prepare split tiles. Ceram Int 39:9179–9186. https://doi.org/10.1016/j.ceramint.2013.05.019

    Article  Google Scholar 

  10. Wang HB, Lin ZZ, He ZY (2012) A new brick prepared from municipal sewage sludge and shale. Adv Mater Res 374–377:18–23. https://doi.org/10.4028/www.scientific.net/AMR.374-377.18

    Article  Google Scholar 

  11. Ukwatta A, Mohajerani A, Setunge S, Eshtiaghi N (2015) Possible use of biosolids in fired-clay bricks. Constr Build Mater 91:86–93. https://doi.org/10.1016/j.conbuildmat.2015.05.033

    Article  Google Scholar 

  12. Cusidó JA, Cremades LV, González M (2003) Gaseous emissions from ceramics manufactured with urban sewage sludge during firing processes. Waste Manag 23:273–280. https://doi.org/10.1016/S0956-053X(02)00060-0

    Article  Google Scholar 

  13. Devant M, Cusidó JA, Soriano C (2011) Custom formulation of red ceramics with clay, sewage sludge and forest waste. Appl Clay Sci 53:669–675. https://doi.org/10.1016/j.clay.2011.06.002

    Article  Google Scholar 

  14. Martínez-García C, Eliche-Quesada D, Pérez-Villarejo L et al (2012) Sludge valorization from wastewater treatment plant to its application on the ceramic industry. J Environ Manag 95:S343–S348. https://doi.org/10.1016/j.jenvman.2011.06.016

    Article  Google Scholar 

  15. Lynn CJ, Dhir RK, Ghataora GS (2016) Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics. Water Sci Technol 74:17–29. https://doi.org/10.2166/wst.2016.040

    Article  Google Scholar 

  16. Deng-Fong L, Chih-Huang W (2001) Use of sewage sludge ash as brick material. J Environ Eng 127:922–927

    Article  Google Scholar 

  17. Handle F (2007) Extrusion in ceramics. Springer, New York

    Book  Google Scholar 

  18. Andrade FA, Al-Qureshi HA, Hotza D (2011) Measuring the plasticity of clays: a review. Appl Clay Sci 51:1–7

    Article  Google Scholar 

  19. Shimobe S, Spagnoli G (2019) A global database considering Atterberg limits with the Casagrande and fall-cone tests. Eng Geol 260:105201. https://doi.org/10.1016/j.enggeo.2019.105201

    Article  Google Scholar 

  20. Verástegui-Flores RD, Di Emidio G (2014) Assessment of clay consistency through conventional methods and indirect extrusion tests. Appl Clay Sci 101:632–636. https://doi.org/10.1016/j.clay.2014.09.033

    Article  Google Scholar 

  21. Monteiro SN, Alexandre J, Margem JI et al (2008) Incorporation of sludge waste from water treatment plant into red ceramic. Constr Build Mater 22:1281–1287. https://doi.org/10.1016/j.conbuildmat.2007.01.013

    Article  Google Scholar 

  22. Weng CH, Lin DF, Chiang PC (2003) Utilization of sludge as brick materials. Adv Environ Res 7:679–685. https://doi.org/10.1016/S1093-0191(02)00037-0

    Article  Google Scholar 

  23. Zhang YM, Jia LT, Mei H et al (2016) Fabrication, microstructure and properties of bricks fired from lake sediment, cinder and sewage sludge. Constr Build Mater 121:154–160. https://doi.org/10.1016/j.conbuildmat.2016.05.155

    Article  Google Scholar 

  24. Liew AG, Idris A, Wong CHK et al (2004) Incorporation of sewage sludge in clay brick and its characterization. Waste Manag Res 22:226–233. https://doi.org/10.1177/0734242X04044989

    Article  Google Scholar 

  25. Zat T, Bandieira M, Sattler N et al (2021) Potential re-use of sewage sludge as a raw material in the production of eco-friendly bricks. J Environ Manag 297:113238. https://doi.org/10.1016/j.jenvman.2021.113238

    Article  Google Scholar 

  26. Bandieira M, Zat T, Schuster SL et al (2021) Water treatment sludge in the production of red-ceramics bricks: effect in the physic-mechanical properties. Mater Struct Constr 54:168. https://doi.org/10.1617/s11527-021-01764-0

    Article  Google Scholar 

  27. Associação Brasileira de Normas Técnicas (ABNT) (2004) NBR 10007 Amostragem de resíduos sólidos, Rio de Janeiro

  28. Associação Brasileira de Normas Técnicas (2004) ABNT NBR 10004: Resíduos Sólidos—Classificação (Solid waste classification)

  29. Associação Brasileira de Normas Técnicas (ABNT) (2017) ABNT NBR 15270-2: componentes Cerâmicos—Blocos e tijolos para alvenaria Parte 2: Métodos de ensaios, Rio de Janeiro

  30. American Society for Testing and Materials (ASTM) (2010) ASTM D4318-00: standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM Int 04:1–14

  31. British Standards Institution (2018) BS EN ISO 17892-12:2018. Geotechnical investigation and testing. Laboratory testing of soil. Determination of liquid and plastic limits

  32. Mezger TG (2014) The rheology handbook, 4th edn. Vicentz Network, Hanover

    Google Scholar 

  33. Pértile P, Holthusen D, Gubiani PI, Reichert JM (2018) Microstructural strength of four subtropical soils evaluated by rheometry: properties, difficulties and opportunities. Sci Agric 75:154–162. https://doi.org/10.1590/1678-992x-2016-0267

    Article  Google Scholar 

  34. ISO Technical Committee ISO/TC61SC5 (2015) ISO 6721-10:2015 plastics—determination of dynamic mechanical properties—part 10: complex shear viscosity using a parallel-plate oscillatory rheometer

  35. British Standards Institution (2012) BS EN 14770:2012 Bitumen and bituminous binders. Determination of complex shear modulus and phase angle. Dynamic Shear Rheometer (DSR)

  36. Jansen D, Stabler C, Goetz-Neunhoeffer F et al (2011) Does ordinary Portland cement contain amorphous phase? A quantitative study using an external standard method. Powder Diffr 26:31–38. https://doi.org/10.1154/1.3549186

    Article  Google Scholar 

  37. Jansen D, Goetz-Neunhoeffer F, Stabler C, Neubauer J (2011) A remastered external standard method applied to the quantification of early OPC hydration. Cem Concr Res 41:602–608. https://doi.org/10.1016/j.cemconres.2011.03.004

    Article  Google Scholar 

  38. Chinn RE (2002) Ceramography: preparation and analysis of ceramic microstructures. ASM International®

  39. American Society for Testing and Materials ASTM (2010) Standard guide for determination of chemical elements in fluid catalytic cracking catalysts by X-ray fluorescence spectrometry

  40. Associaçao Brasileira de Normas Técnicas (2004) ABNT NBR-10005: procedimento para obtenção de lixiviado de resíduos sólidos (Procedure for obtention leaching extract of solid wastes)

  41. Felix CSA, Silva DG, Andrade HMC et al (2018) An on-line system using ion-imprinted polymer for preconcentration and determination of bismuth in seawater employing atomic fluorescence spectrometry. Talanta 184:87–92. https://doi.org/10.1016/j.talanta.2018.02.089

    Article  Google Scholar 

  42. Associaçao Brasileira de Normas Técnicas (2004) ABNT NBR 10006: procedimento para obtenção de extrato solubilizado de resíduos sólidos

  43. Associaçao Brasileira de Normas Técnicas (2017) ABNT NBR 15270-2: componentes cerâmicos. Parte 2: Blocos cerâmicos para alvenaria estrutural—Terminologia e requisitos (Ceramic components Part 2: Structural ceramic block, perforated block, load-bearing masonry—terminology and requirements)

  44. Schiavo LSA, Mantas PQ, Segadães AM, Cruz RCD (2018) From dry pressing to plastic forming of ceramics: assessing the workability window. Constr Build Mater 189:594–600. https://doi.org/10.1016/j.conbuildmat.2018.09.015

    Article  Google Scholar 

  45. Vieira CMF, Sánchez R, Monteiro SN (2008) Characteristics of clays and properties of building ceramics in the state of Rio de Janeiro, Brazil. Constr Build Mater 22:781–787. https://doi.org/10.1016/j.conbuildmat.2007.01.006

    Article  Google Scholar 

  46. Ortelli G, Vicenzini P (1984) Reduction of efflorescence in brick through addition of ceramic sludges. Am Ceram Soc Bull 1:1

    Google Scholar 

  47. Stempkowska A, Kępys W, Pietrzyk J (2015) The influence of incinerated sewage sludge ashes physical and chemical properties in possibility of usage in red ceramic. Gospod Surowcami Miner/Miner Resour Manag 31:109–122. https://doi.org/10.1515/gospo-2015-0014

    Article  Google Scholar 

  48. Juel MAI, Mizan A, Ahmed T (2017) Sustainable use of tannery sludge in brick manufacturing in Bangladesh. Waste Manag 60:259–269. https://doi.org/10.1016/j.wasman.2016.12.041

    Article  Google Scholar 

  49. Subashi De Silva GHMJ, Mallwattha MPDP (2018) Strength, durability, thermal and run-off properties of fired clay roof tiles incorporated with ceramic sludge. Constr Build Mater 179:390–399. https://doi.org/10.1016/j.conbuildmat.2018.05.187

    Article  Google Scholar 

  50. Ukwatta A, Mohajerani A, Eshtiaghi N, Setunge S (2015) Variation in physical and mechanical properties of fired-clay bricks incorporating ETP biosolids. J Clean Prod 119:76–85. https://doi.org/10.1016/j.jclepro.2016.01.094

    Article  Google Scholar 

  51. Wang Z, Li B, Liang X (2022) Utilization of river sediment, sewage sludge and wheat straw as the primary raw material in sintered-shale bricks. J Mater Cycles Waste Manag 24:2401–2415. https://doi.org/10.1007/s10163-022-01487-6

    Article  Google Scholar 

  52. Arroyo F, Luna-Galiano Y, Leiva C et al (2020) Environmental risks and mechanical evaluation of recycling red mud in bricks. Environ Res 186:109537. https://doi.org/10.1016/j.envres.2020.109537

    Article  Google Scholar 

  53. Liew AG, Idris A, Samad AA et al (2004) Reusability of sewage sludge in clay bricks. J Mater Cycles Waste Manag 6:41–47. https://doi.org/10.1007/s10163-003-0105-7

    Article  Google Scholar 

  54. Inoue K, Uchida T (2017) Reduction of hazardous elements contained in sewage sludge incineration ash. J Mater Cycles Waste Manag 19:1488–1494. https://doi.org/10.1007/s10163-016-0520-1

    Article  Google Scholar 

  55. Herek LCS, Hori CE, Reis MHM et al (2012) Characterization of ceramic bricks incorporated with textile laundry sludge. Ceram Int 38:951–959. https://doi.org/10.1016/j.ceramint.2011.08.015

    Article  Google Scholar 

  56. Mymrin VA, Alekseev KP, Zelinskaya EV et al (2014) Industrial sewage slurry utilization for red ceramics production. Constr Build Mater 66:368–374. https://doi.org/10.1016/j.conbuildmat.2014.05.036

    Article  Google Scholar 

  57. Environmental Protection Agency (USEPA) (1992) Test method 1311—toxicity characteristic leaching procedure (TCLP)

  58. Domínguez E, Dondi M, Iglesias C (2012) Environmental suitability of ceramic raw materials: a geochemical approach to volatile emissions and leaching potentials. Environ Earth Sci 65:517–523. https://doi.org/10.1007/s12665-011-1373-5

    Article  Google Scholar 

  59. Areias IOR, Vieira CMF, da Manhães RST, Intorne AC (2017) Incorporação de lodo da estação de tratamento de esgoto (ETE) em cerâmica vermelha. Cerâmica 63:343–349. https://doi.org/10.1590/0366-69132017633672004

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from São Gabriel Saneamento S.A. (SWE 203750/2017-9) and Pauluzzi Cerâmicas Santa Maria Ltda. Grants from CAPES (T. Zat), and the Brazilian National Council for Scientific and Technological Development (CNPq) (E.D. Rodríguez, research fellowship PQ 309885/2020-5; L.P. Specht, research fellowship PQ 3000367/2018-7) are gratefully acknowledged. The authors also wish to thank the Universidade Federal de Santa Maria (UFSM), the Fundação de Apoio na Tecnologia e Ciência (FATEC), the Laboratory of Magnetism and Magnetic Materials (UFSM) for the XRD tests, Grupo de Estudos e Pesquisas em Pavimentação e Segurança Viária (GEPPASV, Grant ANP PETRO 5850.0106353.17.9) for the rheological tests, the Laboratório de Cimentação (LabCim), Bahia State Research Support Foundation (FAPESB—Fundação de Amparo à Pesquisa do Estado da Bahia, Grant No. 0287/2019), the Centro Interdisciplinar de Energia e Ambiente (CIENAM) and Laboratório de Materiais de Construção Civil (LMCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuani Zat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 55 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zat, T., Matos, S.R.C., de Matos, P.R. et al. Sustainable red ceramic block: recycling of a sewage sludge as raw material. J Mater Cycles Waste Manag 25, 1019–1034 (2023). https://doi.org/10.1007/s10163-022-01587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01587-3

Keywords

Navigation