Skip to main content

Advertisement

Log in

Life cycle assessment of different municipal solid waste management options: a case study of Algiers (Algeria)

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This paper examines four strategies of municipal solid waste management (MSWM) for Algiers city using life cycle assessment methodology. Analyzed options include the current WM landfilling system (SC1), landfilling with biogas recovery (SC2), anaerobic digestion (SC3), and anaerobic digestion with energy recovery (SC4). Real facilities in the city provided data for the inventory and background process data were taken from Ecoinvent V3.1 of SimaPro 8.1. Scenarios were compared using ReCiPe evaluation method. Results indicate that baseline scenario produces the greatest impact due diesel emissions for transportation and biogas emitted. Meanwhile, steel used for industrial installations and engines emissions contribute negatively in anaerobic digestion scenarios. Furthermore, AD scenarios shows significant improvement in all impact categories except eutrophication, toxicity and human health, which is due to high NOx and CO emissions from the biogas engine. The SC4 scenario achieved the least environmental impact where it eliminates 403.06 kg CO2 eq/t waste, saves fossil fuels with a net avoidance of 18.2 PJ/t waste, and electricity generation of 280 GWhel/year, covering 6% of the city electricity needs. The sensitivity analysis revealed that the variation of parameters do not alter the ranking order of scenarios affirming the reliability of results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaza S, Yao L, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: A global snapshot of solid waste management to 2050. The World Bank

  2. Karim O, Youcef K, Mehdi L (2016) Characterization of household and similar waste in the northern, semi-arid and arid areas of Algeria. National Waste Agency

  3. Djemaci B (2014) Impact des facteurs d’attractivité des territoires sur la production future des déchets urbains en Algérie: Mondes en développement no. 166:113–130. https://doi.org/10.3917/med.166.0113

  4. Tsydenova N, Vázquez Morillas A, Cruz Salas A (2018) Sustainability assessment of waste management system for Mexico city (Mexico)—Based on analytic hierarchy process. Recycling 3:45. https://doi.org/10.3390/recycling3030045

    Article  Google Scholar 

  5. Abderrezek KG (2016) Les énergies Renouvelables, Un Pilier De Développement De L’agriculture Algérienne: Cas De L’énergie éolienne. Magazine économique 259. https://doi.org/10.33704/1748-002-007-019

  6. Rana R, Ganguly R, Gupta AK (2019) Life-cycle assessment of municipal solid-waste management strategies in Tricity region of India. J Mater Cycles Waste Manag 21:606–623. https://doi.org/10.1007/s10163-018-00822-0

    Article  Google Scholar 

  7. Cherubini F, Bargigli S, Ulgiati S (2009) Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy 34:2116–2123. https://doi.org/10.1016/j.energy.2008.08.023

    Article  Google Scholar 

  8. Dong J, Chi Y, Zou D et al (2014) Comparison of municipal solid waste treatment technologies from a life cycle perspective in China. Waste Manag Res 32:13–23. https://doi.org/10.1177/0734242X13507311

    Article  Google Scholar 

  9. Cleary J (2009) Life cycle assessments of municipal solid waste management systems: A comparative analysis of selected peer-reviewed literature. Environ Int 35:1256–1266. https://doi.org/10.1016/j.envint.2009.07.009

    Article  Google Scholar 

  10. Laurent A, Bakas I, Clavreul J et al (2014) Review of LCA studies of solid waste management systems—Part I: Lessons learned and perspectives. Waste Manage 34:573–588. https://doi.org/10.1016/j.wasman.2013.10.045

    Article  Google Scholar 

  11. Laurent A, Clavreul J, Bernstad A et al (2014) Review of LCA studies of solid waste management systems—Part II: Methodological guidance for a better practice. Waste Manage 34:589–606. https://doi.org/10.1016/j.wasman.2013.12.004

    Article  Google Scholar 

  12. Zhou Z, Tang Y, Chi Y et al (2018) Waste-to-energy: A review of life cycle assessment and its extension methods. Waste Manag Res 36:3–16. https://doi.org/10.1177/0734242X17730137

    Article  Google Scholar 

  13. Mayer F, Bhandari R, Gäth S (2019) Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Sci Total Environ 672:708–721. https://doi.org/10.1016/j.scitotenv.2019.03.449

    Article  Google Scholar 

  14. Zhang J, Qin Q, Li G, Tseng C-H (2021) Sustainable municipal waste management strategies through life cycle assessment method: A review. J Environ Manage 287:112238. https://doi.org/10.1016/j.jenvman.2021.112238

    Article  Google Scholar 

  15. Tunesi S, Baroni S, Boarini S (2016) Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna. Waste Manag Res 34:933–946. https://doi.org/10.1177/0734242X16644520

    Article  Google Scholar 

  16. Mancini E, Arzoumanidis I, Raggi A (2019) Evaluation of potential environmental impacts related to two organic waste treatment options in Italy. J Clean Prod 214:927–938. https://doi.org/10.1016/j.jclepro.2018.12.321

    Article  Google Scholar 

  17. Fernández-Nava Y, del Río J, Rodríguez-Iglesias J et al (2014) Life cycle assessment of different municipal solid waste management options: a case study of Asturias (Spain). J Clean Prod 81:178–189. https://doi.org/10.1016/j.jclepro.2014.06.008

    Article  Google Scholar 

  18. Evangelisti S, Lettieri P, Borello D, Clift R (2014) Life cycle assessment of energy from waste via anaerobic digestion: A UK case study. Waste Manage 34:226–237. https://doi.org/10.1016/j.wasman.2013.09.013

    Article  Google Scholar 

  19. Wang D, He J, Tang Y-T et al (2020) Life cycle assessment of municipal solid waste management in Nottingham, England: Past and future perspectives. J Clean Prod 251:119636. https://doi.org/10.1016/j.jclepro.2019.119636

    Article  Google Scholar 

  20. Kaazke J, Meneses M, Wilke B-M, Rotter VS (2013) Environmental evaluation of waste treatment scenarios for the towns Khanty-Mansiysk and Surgut, Russia. Waste Manag Res 31:315–326. https://doi.org/10.1177/0734242X12473792

    Article  Google Scholar 

  21. Zaikova A, Vinitskaia N, Deviatkin I et al (2022) Life cycle assessment of existing and alternative options for municipal solid waste management in Saint Petersburg and the Leningrad Region. Russia Recycling 7:19. https://doi.org/10.3390/recycling7020019

    Article  Google Scholar 

  22. Khandelwal H, Thalla AK, Kumar S, Kumar R (2019) Life cycle assessment of municipal solid waste management options for India. Biores Technol 288:121515. https://doi.org/10.1016/j.biortech.2019.121515

    Article  Google Scholar 

  23. Akhavan Limoodehi F, Tayefeh SM, Heydari R, Abdoli MA (2017) Life Cycle Assessment of Municipal Solid Waste Management in Tehran. Environ Energy Econ Res 1(2):207–218. https://doi.org/10.22097/eeer.2017.47247

    Article  Google Scholar 

  24. Falahi M, Avami A (2020) Optimization of the municipal solid waste management system using a hybrid life cycle assessment–emergy approach in Tehran. J Mater Cycles Waste Manag 22:133–149. https://doi.org/10.1007/s10163-019-00919-0

    Article  Google Scholar 

  25. Chi Y, Dong J, Tang Y et al (2015) Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China. J Mater Cycles Waste Manag 17:695–706. https://doi.org/10.1007/s10163-014-0300-8

    Article  Google Scholar 

  26. Dastjerdi B, Strezov V, Kumar R et al (2021) Comparative life cycle assessment of system solution scenarios for residual municipal solid waste management in NSW, Australia. Sci Total Environment 767:144355. https://doi.org/10.1016/j.scitotenv.2020.144355

    Article  Google Scholar 

  27. Fudala-Ksiazek S, Pierpaoli M, Kulbat E, Luczkiewicz A (2016) A modern solid waste management strategy: The generation of new by-products. Waste Manage 49:516–529. https://doi.org/10.1016/j.wasman.2016.01.022

    Article  Google Scholar 

  28. Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renew Sustain Energy Rev 82:1122–1136. https://doi.org/10.1016/j.rser.2017.09.085

    Article  Google Scholar 

  29. Demetrious A, Crossin E (2019) Life cycle assessment of paper and plastic packaging waste in landfill, incineration, and gasification-pyrolysis. J Mater Cycles Waste Manag 21:850–860. https://doi.org/10.1007/s10163-019-00842-4

    Article  Google Scholar 

  30. Pace SA, Yazdani R, Kendall A et al (2018) Impact of organic waste composition on life cycle energy production, global warming and Water use for treatment by anaerobic digestion followed by composting. Resour Conserv Recycl 137:126–135. https://doi.org/10.1016/j.resconrec.2018.05.030

    Article  Google Scholar 

  31. Slorach PC, Jeswani HK, Cuéllar-Franca R, Azapagic A (2019) Environmental and economic implications of recovering resources from food waste in a circular economy. Sci Total Environ 693:133516. https://doi.org/10.1016/j.scitotenv.2019.07.322

    Article  Google Scholar 

  32. Guven H, Wang Z, Eriksson O (2019) Evaluation of future food waste management alternatives in Istanbul from the life cycle assessment perspective. J Clean Prod 239:117999. https://doi.org/10.1016/j.jclepro.2019.117999

    Article  Google Scholar 

  33. dos Santo IFS, Mensah JHR, Gonçalves ATT, Barros RM (2020) Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential. Renewable Energy 149:1386–1394

    Article  Google Scholar 

  34. Kong D, Shan J, Iacoboni M, Maguin SR (2012) Evaluating greenhouse gas impacts of organic waste management options using life cycle assessment. Waste Manag Res 30:800–812. https://doi.org/10.1177/0734242X12440479

    Article  Google Scholar 

  35. Ogundipe FO, Jimoh OD (2015) Life cycle assessment of municipal solid waste management in Minna, Niger State, Nigeria. Int J Environ Res 9:1305–1314

    Google Scholar 

  36. Balogun-Adeleye RM, Longe EO, Aiyesimoju KO (2019) Environmental assessment of municipal solid waste (MSW) disposal options: A case study of Olushosun landfill, Lagos State. IOP Conf Ser: Mater Sci Eng 640:012091. https://doi.org/10.1088/1757-899X/640/1/012091

    Article  Google Scholar 

  37. Senhaji F (2008) Récupération et torchage du CH4 méthane de la décharge de l’oulja à Rabat-Salé (Maroc). In: International training Center cdm. Alger, Algeria

  38. Kamaruddin MA, MohdS Y, Aziz HA, Hung Y-T (2015) Sustainable treatment of landfill leachate. Appl Water Sci 5:113–126. https://doi.org/10.1007/s13201-014-0177-7

    Article  Google Scholar 

  39. Doka G (2009) Life cycle inventories of waste treatment services Ecoinvent report No. 13. Swiss Centre for Life Cycle inventories, Dübendorf. p111

  40. Reddy KR, Kumar G, Giri RK (2017) Modeling coupled processes in municipal solid waste landfills: An overview with key engineering challenges. Int J of Geosynth and Ground Eng 3:6. https://doi.org/10.1007/s40891-016-0082-2

    Article  Google Scholar 

  41. Dajić A, Mihajlović M, Jovanović M et al (2016) Landfill design: need for improvement of water and soil protection requirements in EU landfill directive. Clean Techn Environ Policy 18:753–764. https://doi.org/10.1007/s10098-015-1046-2

    Article  Google Scholar 

  42. Whiting A, Azapagic A (2014) Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy 70:181–193. https://doi.org/10.1016/j.energy.2014.03.103

    Article  Google Scholar 

  43. Nimaa TD, Guyb M (2016) Sorting-Composting of Biodegradable Waste in the Municipality of Chief (Algeria): The Key Steps. Int J Waste Resour 6. DOI: https://doi.org/10.4172/2252-5211.1000204

  44. Kaparaju P, Rintala J (2013) Generation of heat and power from biogas for stationary applications: boilers, gas engines and turbines, combined heat and power (CHP) plants and fuel cells. In: The Biogas Handbook. Elsevier, pp 404–427

  45. Fruergaard T, Astrup T (2011) Optimal utilization of waste-to-energy in an LCA perspective. Waste Manage 31:572–582. https://doi.org/10.1016/j.wasman.2010.09.009

    Article  Google Scholar 

  46. Milutinović B, Stefanović G, Đekić PS et al (2017) Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis. Energy 137:917–926. https://doi.org/10.1016/j.energy.2017.02.167

    Article  Google Scholar 

  47. Jain S, Singhal S, Pandey S (2020) Environmental life cycle assessment of construction and demolition waste recycling: A case of urban India. Resour Conserv Recycl 155:104642. https://doi.org/10.1016/j.resconrec.2019.104642

    Article  Google Scholar 

  48. Haupt M, Kägi T, Hellweg S (2018) Modular life cycle assessment of municipal solid waste management. Waste Manage 79:815–827. https://doi.org/10.1016/j.wasman.2018.03.035

    Article  Google Scholar 

  49. Miliūte J, Kazimieras Staniškis J (2010) Application of life-cycle assessment in optimisation of municipal waste management systems: the case of Lithuania. Waste Manag Res 28:298–308. https://doi.org/10.1177/0734242X09342149

    Article  Google Scholar 

  50. Mendes MR, Aramaki T, Hanaki K (2004) Comparison of the environmental impact of incineration and landfilling in São Paulo City as determined by LCA. Resour Conserv Recycl 41:47–63. https://doi.org/10.1016/j.resconrec.2003.08.003

    Article  Google Scholar 

  51. Gunamantha M, Sarto, (2012) Life cycle assessment of municipal solid waste treatment to energy options: Case study of KARTAMANTUL region, Yogyakarta. Renewable Energy 41:277–284. https://doi.org/10.1016/j.renene.2011.11.008

    Article  Google Scholar 

  52. Richard EN, Hilonga A, Machunda RL, Njau KN (2021) Life cycle analysis of potential municipal solid wastes management scenarios in Tanzania: the case of Arusha City. Sustain Environ Res 31:1. https://doi.org/10.1186/s42834-020-00075-3

    Article  Google Scholar 

  53. Tong H, Shen Y, Zhang J et al (2018) A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries. Appl Energy 225:1143–1157. https://doi.org/10.1016/j.apenergy.2018.05.062

    Article  Google Scholar 

  54. Belboom S, Digneffe J-M, Renzoni R et al (2013) Comparing technologies for municipal solid waste management using life cycle assessment methodology: A Belgian case study. Int J Life Cycle Assess 18:1513–1523. https://doi.org/10.1007/s11367-013-0603-3

    Article  Google Scholar 

  55. Ioannou-Ttofa L (2021) Life cycle assessment of household biogas production in Egypt: Influence of digester volume, biogas leakages, and digestate valorization as biofertilizer. Journal of Cleaner Production 14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadia Zibouche.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1918 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zibouche, S., Amouri, M. & Bouarab, R. Life cycle assessment of different municipal solid waste management options: a case study of Algiers (Algeria). J Mater Cycles Waste Manag 25, 954–969 (2023). https://doi.org/10.1007/s10163-022-01576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01576-6

Keywords

Navigation