Skip to main content
Log in

Evaluation of properties and composition of the mixed municipal waste fine fraction, the case study of Czech Republic

  • REGIONAL CASE STUDY
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Estimation of mixed municipal waste composition is important for the option of suitable waste treatment. Many studies have presented their methodologies for analysing the composition of mixed municipal waste, but no uniform approach is available. The significant part of mixed municipal waste can be the fine fraction, depending on the analysis approach used. Nevertheless, the more detailed composition of fine fraction is unknown. This contribution aims to present chemical analysis of fine fraction of mixed municipal waste obtained from the city of Brno, Czech Republic. The mixed municipal waste in study area consists of about 25% fine fraction. The amount of moisture and the combustible part of the waste are first monitored in fine fraction. The elemental composition of non-combustible waste and its phase composition is further evaluated. The approach to chemical analysis has been designed to be easily repeatable and can complement routine manual waste analyses. The results of the analysis in the studied area showed the potential for energy utilisation of the fine fraction, even if the waste separation is increased. In addition, fine fraction contains metals suitable for material recovery, which can be separated from the slag after incineration and thus promote the material recovery of waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance).

  2. Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the landfill of waste (Text with EEA relevance).

  3. Directive (EU) 2018/851 of the European parliament and of the council of 30 May 2018 amending directive 2008/98/EC on waste (Text with EEA relevance)

  4. Kůdela J, Smejkalová V, Šomplák R, Nevrlý V (2020) Legislation-induced planning of waste processing infrastructure: a case study of the Czech Republic. Renew Sustain Energy Rev 132:110058. https://doi.org/10.1016/j.rser.2020.110058

    Article  Google Scholar 

  5. Eurostat (2022) European statistical office. https://ec.europa.eu/eurostat. Accessed 5 Oct 2022

  6. Gu W, Liu D, Wang C (2021) Energy recovery potential from incineration using municipal solid waste based on multi-scenario analysis in Beijing. Environ Sci Pollut Res 28(21):27119–27131. https://doi.org/10.1007/s11356-021-12478-9

    Article  Google Scholar 

  7. Act No. 541/2020 Coll. Waste Act. In Czech. https://www.zakonyprolidi.cz/cs/2020-541. Accessed 5 Oct 2022

  8. Taskhiri MS, Behera SK, Tan RR, Park H-S (2015) Fuzzy optimization of a waste-to-energy network system in an eco-industrial park. J Mater Cycle Waste Manag 17(3):476–489. https://doi.org/10.1007/s10163-014-0259-5

    Article  Google Scholar 

  9. TIRSMZP719. Prognosis of waste production and determination of the composition of municipal waste. Technology agency of the Czech Republic, solution period: 1.1.2019–31.12.2021. Available from: https://starfos.tacr.cz/en/project/TIRSMZP719. Accessed 5 Oct 2022

  10. Veverka Z, Pavlas M, Gregor J, Kropáč J, Bouda Z, Suzová J (2021) V4 TIRSMZP719; Methodology for determining the composition of mixed municipal waste and municipal solid waste. The product was handed over to the user of the result: Ministry of the environment. In Czech Available from: https://www.mzp.cz/cz/metodika_stanoveni_sko_ko. Accessed 30 June 2022

  11. Rosecký M, Šomplák R, Slavík J, Kalina J, Bulková G, Bednář J (2021) Predictive modelling as a tool for effective municipal waste management policy at different territorial levels. J Environ Manage 291:112584. https://doi.org/10.1016/j.jenvman.2021.112584

    Article  Google Scholar 

  12. MODECOM (2017) Campagne nationale de caratérisation des déchets ménagers et assimilés. In French. https://www.ademe.fr/modecom-2017-campagne-nationale-caracterisation-dechets-menagers-assimiles. Accessed 5 Oct 2022

  13. SWA-Tool, 2004. Methodology for the analysis of solid waste. https://www.wien.gv.at/meu/fdb/pdf/swa-tool-759-ma48.pdf. Accessed 5 Oct 2022

  14. Nordtest (1995) Solid waste, municipal: sampling and characterization. Nordtest method NT, Finland. http://www.nordtest.info/index.php/methods/item/solid-waste-particulate-materialssampling-nt-envir-004.html. Accessed 5 Oct 2022

  15. Argus method (2013) Merkblatt für die durchführung von untersuchungen zur stofflichen zusammensetzung des restmülls aus haushaltungen. In German. https://www.thueringen.de/.../hma-merkblatt_01_15_2013.pdf. Accessed 5 Oct 2022

  16. ASTM D5231–92 (2016) Standard test method for determination of the composition of unprocessed municipal solid waste, ASTM International, West Conshohocken, PA. http://www.astm.org. Accessed 5 Oct 2022

  17. Parfitt J, Griffiths P, Reid T (2013) Guidance on the methodology for waste composition analysis. Zero Waste Scotland, Stirling, Scotland. https://www.zerowastescotland.org.uk/content/guidance-methodology-waste-composition-analysis-0. Accessed 5 Oct 2022

  18. Abylkhani B, Guney M, Aiymbetov B, Yagofarova A, Sarbassov Y, Zorpas AA, Venetis C, Inglezakis V (2021) Detailed municipal solid waste composition analysis for Nur-Sultan City, Kazakhstan with implications for sustainable waste management in Central Asia. Environ Sci Pollut Res 28(19):24406–24418. https://doi.org/10.1007/s11356-020-08431-x

    Article  Google Scholar 

  19. Arena U, Mastellon ML, Perugini F (2003) The environmental performance of alternative solid waste management options: a life cycle assessment study. Chem Eng J 96(1–3):207–222. https://doi.org/10.1016/j.cej.2003.08.019

    Article  Google Scholar 

  20. BRGM New MSW sampling and characterization methodologies. France. http://www.iwa.tuwien.ac.at/newa2008/presentations/Wavrer_New%20MSW%20sampling.pdf. Accessed 5 Oct 2022

  21. Burnley SJ, Ellis JC, Flowerdew R, Poll AJ, Prosser H (2007) Assessing the composition of municipal solid waste in Wales. Resour Conserv Recycl 49(3):264–283. https://doi.org/10.1016/j.resconrec.2006.03.015

    Article  Google Scholar 

  22. Boer ED, Jedrczak A, Kowalski Z, Kulczycka J, Szpadt R (2010) A review of municipal solid waste composition and quantities in Poland. Waste Manag 30(3):369–377. https://doi.org/10.1016/j.wasman.2009.09.018

    Article  Google Scholar 

  23. Dennison GJ, Dodd VA, Whelan B (1996) A socio-economic based survey of household waste characteristics in the city of Dublin, Ireland. I. Waste composition. Resour Conserv Recycl 17(3):227–244. https://doi.org/10.1016/0921-3449(96)01070-1

    Article  Google Scholar 

  24. Giugliano M, Grosso M, Rigamonti L (2008) Energy recovery from municipal waste: a case study for a middle-sized Italian district. Waste Manag 28(1):39–50. https://doi.org/10.1016/j.wasman.2006.12.018

    Article  Google Scholar 

  25. Gomez G, Meneses M, Ballinas L, Castells F (2008) Characterization of urban solid waste in Chihuahua. Mexico Waste Manag 28(12):2465–2471. https://doi.org/10.1016/j.wasman.2007.10.023

    Article  Google Scholar 

  26. Hurka M, Malinowski M (2014) Assessment of the use of EWA bioreactor in the process of biodrying of undersize fraction manufactured from mixed municipal solid waste. Infrastruct Ecol Rural Area. https://doi.org/10.14597/infraeco.2014.4.1.083

    Article  Google Scholar 

  27. Kaartinen T, Sormunen K, Rintala J (2013) Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. J Clean Prod 55:56–66. https://doi.org/10.1016/j.jclepro.2013.02.036

    Article  Google Scholar 

  28. Malinowski M (2017) Analysis of the undersize fraction temperature changes during the biostabilization process. Infrastruct Ecol Rural Area. https://doi.org/10.14597/infraeco.2017.4.3.133

    Article  Google Scholar 

  29. Montejo C, Costa C, Ramos P, del Carmen MM (2011) Analysis and comparison of municipal solid waste and reject fraction as fuels for incineration plants. Appl Therm Eng 31(13):2135–2140. https://doi.org/10.1016/j.applthermaleng.2011.03.041

    Article  Google Scholar 

  30. Moreno AD, Garcés Rodrígue M, Velasco AR, Marín Enriquez JC, Gutiérrez Lara R, Moreno Gutiérrez A, Delgadillo Hernández NA (2013) Mexico city’s municipal solid waste characteristics and composition analysis. Revista Internacional de Contaminacion Ambiental 29(1):39–46

    Google Scholar 

  31. Poll J (2004) Greater London authority waste composition scoping study. Greater London Authority, London

    Google Scholar 

  32. Reddy KR, Hettiarachchi H, Parakalla NS, Gangathulas J, Bogner JE (2009) Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Manag 29(2):952–959. https://doi.org/10.1016/j.wasman.2008.05.011

    Article  Google Scholar 

  33. Religa A, Malinowski M, Lukasiewicz M (2017) The impact of leachate recirulation during aerobic biostabilisation of undersize fraction on the properties of stabilisate produced. Mendel Net 24:453–458

  34. Rusín J, Chamrádová K (2017) Organic fraction of municipal solid waste and its high-solids anaerobic digestion. Waste Forum 4:244–253

    Google Scholar 

  35. SAEFL (2003). A survey of the composition of household waste 2001/02. Federal office for the environment. https://www.bafu.admin.ch/bafu/en/home/topics/waste/publicationsstudies/publications/composition-household-waste-2001-02.html. Accessed 5 Oct 2022

  36. Sastry DBSSR (2009) Composition of municipal solid waste – Need for thermal treatment in the present Indian context. http://ireeindia.org/SolarEnergyPresentations/DBSSRS_Article_-_WTE_INDIA_BRIEF_Revised.pdf. Accessed 5 Oct 2022

  37. TETRATECH (2017) Waste comsposition study, Cowichan Valley Regional District. http://www.tetratech.com/. Accessed 5 Oct 2022

  38. Dahlén L, Lagerkvist A (2008) Methods for household waste composition studies. Waste Manag 28:1100–1112. https://doi.org/10.1016/j.wasman.2007.08.014

    Article  Google Scholar 

  39. Sahimaa O, Hupponen M, Horttanainen M, Sorvari J (2015) Method for residual household waste composition studies. Waste Manag 46:3–14. https://doi.org/10.1016/j.wasman.2015.08.032

    Article  Google Scholar 

  40. Zambrano-Monserrate MA, Ruano MA, Ormeño-Candelario V (2021) Determinants of municipal solid waste: a global analysis by countries’ income level. Environ Sci Pollut Res 28(44):62421–62430. https://doi.org/10.1007/s11356-021-15167-9

    Article  Google Scholar 

  41. Bandara NJGJ, Hettiaratchi JPA, Wirasinghe SC, Pilapiiya S (2007) Relation of waste generation and composition to socio-economic factors: a case study. Environ Monit Assess 135(1–3):31–39. https://doi.org/10.1007/s10661-007-9705-3

    Article  Google Scholar 

  42. Pop N, Baciu C, Bican-Brisan N (2015) Survey on household waste composition generated in Cluj-Napoca, Romania during the summer season. Environ Eng Manag J 14(1):2643–2651. https://doi.org/10.30638/eemj.2015.270

    Article  Google Scholar 

  43. Wang L, Øye B, Becidan M, Stuen J, Skreiberg Ø (2016) Ash deposits characterization in a large-scale municipal waste-to-energy incineration plant. Chem Eng Trans 50:25–30. https://doi.org/10.3303/CET1650005

    Article  Google Scholar 

  44. ČSN Iso 11465 (836635) (1998) Soil quality - determination of dry matter content and soil moisture content - Gravimetric method. Czech Standards Institution, Prague

    Google Scholar 

  45. Haiying Z, Youcai Z, Jingyu Q (2010) Thermal characterization of fly ash from one municipal solid waste incinerator (MSWI) in Shanghai. Process Saf Environ Prot 88(4):269–275. https://doi.org/10.1016/j.psep.2010.03.004

    Article  Google Scholar 

  46. Wong S, Mah AXY, Nordin AH, Nyakuma BB, Ngadi N, Mat R, Amin NAS, Ho WS, Lee TH (2020) Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018. Environ Sci Pollut Res 27(8):7757–7784. https://doi.org/10.1007/s11356-020-07933-y

    Article  Google Scholar 

  47. Chimenos JM, Fernández AI, Miralles L, Navarro RJR, Ezquerra A (2005) Change of mechanical properties during short-term natural weathering of MSWI bottom ash. Environ Sci Technol 39(19):7725–7730. https://doi.org/10.1021/es050420u

    Article  Google Scholar 

  48. Wei Y, Shimaoka T, Saffarzadeh A, Takahashi F (2011) Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. J Hazard Mater 187(1–3):534–543. https://doi.org/10.1016/j.jhazmat.2011.01.070

    Article  Google Scholar 

  49. Tasneem KM, Nam BH, Eun J (2015) Sustainable utilization of MSWI bottom ash as road construction materials, part II: chemical and environmental characterization. Airfield and highway pavements 2015. American Society of Civil Engineers, Reston, pp 593–604

    Chapter  Google Scholar 

  50. ČSN Iso 15169 (838026) (2007) Characterization of waste - Determination of loss on ignition in waste, sludge and sediments. Czech Standards Institute, Prague

    Google Scholar 

  51. ČSN 72 0103 (2009) Basic procedure for analysis of silicates - determination of loss on ignition. Office for Technical Standardization, Metrology and State Testing, Prague

    Google Scholar 

  52. Gerassimidou S, Velis CA, Williams PT, Castaldi MJ, Black L, Komilis D (2021) Chlorine in waste-derived solid recovered fuel (SRF), co-combusted in cement kilns: a systematic review of sources, reactions, fate and implications. Crit Rev Environ Sci Technol 51(2):140–186. https://doi.org/10.1080/10643389.2020.1717298

    Article  Google Scholar 

  53. Field RA, Riley ML, Mello FC, Corbridge JH, Kotula AW (1974) Bone composition in cattle, pigs, sheep and poultry. J Anim Sci 39(3):493–499. https://doi.org/10.2527/jas1974.393493x

    Article  Google Scholar 

  54. Hubbe MA (2016) Paper of plastic, but not mixed. BioResources 11(3):5656–5657. https://bioresources.cnr.ncsu.edu/resources/paper-or-plastic-yes-but-not-as-a-mixture/. Accessed 5 Oct 2022

    Article  Google Scholar 

  55. Hewlett PC (2004) Lea’s chemistry of cement and concrete, 4th edn. Oxford: Elsevier, Amsterdam, p 1057

    Google Scholar 

  56. Shackelford JF, Doremus RH (2008) Ceramic and glass materials: structure Properties and Processing. Springer Science & Business Media, Heidelberg

    Book  Google Scholar 

  57. Helmenstine AM (2018) Colored glass chemistry: how does it work? ThoughtCo. https://www.thoughtco.com/the-chemistry-of-colored-glass-602252. Accessed 5 Oct 2022

  58. Wiley VC (2016) Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken

    Google Scholar 

  59. Vollprecht D, Parrodi JCH, Lucas HI, Pomberger R (2020) Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Mechanical processing physico-chemical and mineralogical characterization of fine fractions <4.5 mm. Detritus. 10:26–43. https://doi.org/10.31025/2611-4135/2020.13940

    Article  Google Scholar 

  60. Riber C, Fredriksen GS, Christensen TH (2005) Heavy metal content of combustible municipal solid waste in Denmark. Waste Manag Res 23(2):126–132. https://doi.org/10.1177/0734242X05051195

    Article  Google Scholar 

  61. Brno. Available from: https://www2.brno.cz/index.php?lan=en&nav01=20608&nav02=20617. Accessed 5 Oct 2022

  62. Luo S, Xiao B, Xiao L (2010) A novel shredder for municipal solid waste (MSW): influence of feed moisture on breakage performance. Biores Technol 101(15):6256–6258. https://doi.org/10.1016/j.biortech.2010.02.067

    Article  Google Scholar 

  63. Mcphail A, Griffin R, El-Halwagi M, Medlock K, Alvarez P (2014) Environmental, economic, and energy assessment of the ultimate analysis and moisture content of municipal solid waste in a parallel co-combustion process. Energy Fuels 28(2):1453–1462. https://doi.org/10.1021/ef401373n

    Article  Google Scholar 

  64. EPA 2020 Energy recovery from the combustion of municipal solid waste. United States environmental protection agency. https://www.epa.gov/smm/energy-recovery-combustion-municipal-solid-waste-msw. Accessed 5 Oct 2022

  65. Hjelmar O (1996) Disposal strategies for municipal solid waste incineration residues. J Hazard Mater 47(1):345–368. https://doi.org/10.1016/0304-3894(95)00111-5

    Article  Google Scholar 

  66. Zhou H, Meng AH, Long YQ, Li QH, Zhang QG (2014) An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value. Renew Sustain Energy Rev 36:107–122. https://doi.org/10.1016/j.rser.2014.04.024

    Article  Google Scholar 

  67. Lemann M, Walder R, Schwyn A (1995) Heavy metals in municipal solid waste incineration residues. J Power Source 57(1–2):55–59. https://doi.org/10.1016/0378-7753(95)02241-4

    Article  Google Scholar 

  68. Saikia N, Shigeru K, Kojima T (2007) Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Manag 27(9):1178–1189. https://doi.org/10.1016/j.wasman.2006.06.004

    Article  Google Scholar 

  69. Ohbuchi A, Koike Y, Nakamura T (2019) Quantitative phase analysis of fly ash of municipal solid waste by X-ray powder diffractometry/Rietveld refinement. J Mater Cycles Waste Manag 21(4):829–837. https://doi.org/10.1007/s10163-019-00838-0

    Article  Google Scholar 

  70. Saffarzadeh A, Arumugam N, Shimaoka T (2016) Aluminum and aluminum alloys in municipal solid waste incineration (MSWI) bottom ash: a potential source for the production of hydrogen gas. Int J Hydrogen Energy 41(2):820–831. https://doi.org/10.1177/0734242X08095564

    Article  Google Scholar 

  71. Pienkoß F, Abis M, Bruno M, Grönholm R, Hoppe M, Kuchta K, Fiore S, Simon F-G (2022) Heavy metal recovery from the fine fraction of solid waste incineration bottom ash by wet density separation. J Mater Cycles Waste Manag 24(1):364–377. https://doi.org/10.1007/s10163-021-01325-1

    Article  Google Scholar 

  72. Hotta Y, Visvanathan C, Kojima M (2016) Recycling rate and target setting: challenges for standardized measurement. J Mater Cycles Waste Manag 18(1):14–21. https://doi.org/10.1007/s10163-015-0361-3

    Article  Google Scholar 

  73. Šyc M, Simon FG, Hykš J, Braga R, Biganzoli L, Costa G, Funari V, Grosso M (2020) Metal recovery from incineration bottom ash: state-of-the-art and recent developments. J Hazard Mater 393:122433. https://doi.org/10.1016/j.jhazmat.2020.122433

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by ERDF within the research project No. CZ.02.1.01/0.0/0.0/16_026/0008413 “Strategic Partnership for Environmental Technologies and Energy Production” and the project TIRSMZP719 provided by TACR (Technology Agency of the Czech Republic).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The literature review was made by JJ and VS. The data were collected by JJ. The chemical analysis was designed by JP and analysis was performed by JP and BŠ. The results were evaluated by JP a RŠ. The first draft of the manuscript was written by VS and all authors commented on previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Veronika Smejkalová.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval.

Ethical approval is not required.

Consent to participate

Not applicable.

Consent to publication

The authors give consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palovčík, J., Jadrný, J., Smejkalová, V. et al. Evaluation of properties and composition of the mixed municipal waste fine fraction, the case study of Czech Republic. J Mater Cycles Waste Manag 25, 550–564 (2023). https://doi.org/10.1007/s10163-022-01534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01534-2

Keywords

Navigation