Skip to main content
Log in

Methanogenic diversity changes in full-scale anaerobic digesters by co-digestion of food waste and sewage sludge

  • NOTE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This study aims to investigate the methanogenic community of anaerobic mono-digestion of sewage sludge (SL-digester) and co-digestion of sewage sludge with food waste (co-digester). The volatile solids, chemical oxygen demands, organic fractions, and ions in influent wastewater of digester can affect both SL-only digester and co-digester. An increase of [NH4+] in the anaerobic digester affected organic removal efficiency and microbial diversity. Methanobrevibacter smithii (33.8 ± 14.7%), Methanoculleus receptaculi (12.3 ± 5.3%), Methanolinea mesophila (9.5 ± 4.1%), and Methanospirillum hungatei (5.5 ± 9.2%) were dominant in every digester. These methanogens had a significant correlation with physicochemical properties (VFA and NH4+) or methanogens depending on their microbial metabolic pathway such as propionate degradation or ammonia resistance. This research would be used as a guideline to solve the complexity of full-scale plants’ operation and reveal the ‘black-box’ of anaerobic digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AD:

Anaerobic digestion

AcoD:

Anaerobic co-digestion

COD:

Chemical oxygen demand

CSTR:

Continuous tank reactors

FW:

Food waste

OTUs:

Operational taxonomic units

SL:

Sewage sludge

VFAs:

Volatile fatty acids

VS:

Volatile solid

WWTPs:

Wastewater treatment plants

References

  1. MoE (2018) Statistics of Korean Sewerage in 2017. Environment, M.O., Korea

  2. Pawar AA, Karthic A, Lee S, Pandit S, Jung SP (2022) Microbial electrolysis cells for electromethanogenesis: Materials, configurations and operations. Environ Eng Res 27:200480–200484. https://doi.org/10.4491/eer.2020.484

    Article  Google Scholar 

  3. Son S, Koo B, Chai H, Tran HVH, Pandit S, Jung SP (2021) Comparison of hydrogen production and system performance in a microbial electrolysis cell containing cathodes made of non-platinum catalysts and binders. J Water Process 40:101844. https://doi.org/10.1016/j.jwpe.2020.101844

    Article  Google Scholar 

  4. Hagos K, Zong JP, Li DX, Liu C, Lu XH (2017) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sust Energ Rev 76:1485–1496. https://doi.org/10.1016/j.rser.2016.11.184

    Article  Google Scholar 

  5. Li P, He C, Yu R, Shen D, Jiao Y (2019) Anaerobic Co-digestion of urban sewage sludge with agricultural biomass. Waste Biomass Valori 11:6199–6209. https://doi.org/10.1007/s12649-019-00870-z

    Article  Google Scholar 

  6. Rabii A, Aldin S, Dahman Y, Elbeshbishy E (2019) A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies 12:1106. https://doi.org/10.3390/en12061106

    Article  Google Scholar 

  7. Li Y, Chen YG, Wu J (2019) Enhancement of methane production in anaerobic digestion process: a review. Appl Energy 240:120–137. https://doi.org/10.1016/j.apenergy.2019.01.243

    Article  Google Scholar 

  8. Elalami D, Carrere H, Monlau F, Abdelouahdi K, Oukarroum A, Barakat A (2019) Pretreatment and co-digestion of wastewater sludge for biogas production: recent research advances and trends. Renew Sust Energ Rev 114:109287. https://doi.org/10.1016/j.rser.2019.109287

    Article  Google Scholar 

  9. Wang P, Wang H, Qiu Y, Ren L, Jiang B (2018) Microbial characteristics in anaerobic digestion process of food waste for methane production—a review. Bioresour Technol 248:29–36. https://doi.org/10.1016/j.biortech.2017.06.152

    Article  Google Scholar 

  10. Jiang Y, McAdam E, Zhang Y, Heaven S, Banks C, Longhurst P (2019) Ammonia inhibition and toxicity in anaerobic digestion: a critical review. J Water Process 32:100899. https://doi.org/10.1016/j.jwpe.2019.100899

    Article  Google Scholar 

  11. Yin Q, Gu M, Wu G (2020) Inhibition mitigation of methanogenesis processes by conductive materials: a critical review. Bioresour Technol 317:123977. https://doi.org/10.1016/j.biortech.2020.123977

    Article  Google Scholar 

  12. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  13. Lee J, Kim E, Hwang S (2021) Effects of inhibitions by sodium ion and ammonia and different inocula on acetate-utilizing methanogenesis: methanogenic activity and succession of methanogens. Bioresour Technol 334:125202. https://doi.org/10.1016/j.biortech.2021.125202

    Article  Google Scholar 

  14. Hu YQ, Wang F, Chi Y (2020) The evolution of microbial community during acclimation for high sodium food waste anaerobic digestion. Waste Biomass Valori 11:6057–6063. https://doi.org/10.1007/s12649-019-00851-2

    Article  Google Scholar 

  15. Zhang C, Yuan Q, Lu Y (2018) Inhibitory effects of ammonia on syntrophic propionate oxidation in anaerobic digester sludge. Water Res 146:275–287. https://doi.org/10.1016/j.watres.2018.09.046

    Article  Google Scholar 

  16. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  17. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  Google Scholar 

  18. Bennett G (1992) Lowry’s handbook of right-to-know emergency planning. J Hazard Mater 30:361–362. https://doi.org/10.1016/0304-3894(92)87011-4

    Article  Google Scholar 

  19. Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J (2017) Package ‘corrplot.’ Statistician 56:e24

    Google Scholar 

  20. Mehariya S, Patel AK, Obulisamy PK, Punniyakotti E, Wong JWC (2018) Co-digestion of food waste and sewage sludge for methane production: current status and perspective. Bioresour Technol 265:519–531. https://doi.org/10.1016/j.biortech.2018.04.030

    Article  Google Scholar 

  21. Wang P, Yu Z, Zhao J, Zhang H (2018) Do microbial communities in an anaerobic bioreactor change with continuous feeding sludge into a full-scale anaerobic digestion system? Bioresour Technol 249:89–98. https://doi.org/10.1016/j.biortech.2017.09.191

    Article  Google Scholar 

  22. Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911. https://doi.org/10.1016/j.procbio.2013.04.012

    Article  Google Scholar 

  23. Rajagopal R, Masse DI, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641. https://doi.org/10.1016/j.biortech.2013.06.030

    Article  Google Scholar 

  24. Yang Z, Wang W, Liu C, Zhang R, Liu G (2019) Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: selection of strains and reactor performance evaluation. Water Res 155:214–224. https://doi.org/10.1016/j.watres.2019.02.048

    Article  Google Scholar 

  25. Ciotola RJ, Martin JF, Castano JM, Lee J, Michel F (2013) Microbial community response to seasonal temperature variation in a small-scale anaerobic digester. Energies 6:5182–5199. https://doi.org/10.3390/en6105182

    Article  Google Scholar 

  26. Yu XN, Zhang CG, Qiu L, Yao YQ, Sun GT, Guo XH (2020) Anaerobic digestion of swine manure using aqueous pyrolysis liquid as an additive. Renew Energ 147:2484–2493. https://doi.org/10.1016/j.renene.2019.10.096

    Article  Google Scholar 

  27. Qin Y, Yin X, Xu X, Yan X, Bi F, Wu W (2020) Specific surface area and electron donating capacity determine biochar’s role in methane production during anaerobic digestion. Bioresour Technol 303:122919. https://doi.org/10.1016/j.biortech.2020.122919

    Article  Google Scholar 

  28. Sposob M, Moon HS, Lee D, Kim TH, Yun YM (2020) Comprehensive analysis of the microbial communities and operational parameters of two full-scale anaerobic digestion plants treating food waste in South Korea: seasonal variation and effect of ammonia. J Hazard Mater 398:122975. https://doi.org/10.1016/j.jhazmat.2020.122975

    Article  Google Scholar 

  29. Chen S, Wang YF, Cheng HC, Hazen TC, He CG, He Q (2022) Identification of propionate-degrading microbial populations in methanogenic processes for waste treatment: methanosaeta and methanoculleus. Environ Eng Sci 39:202–211. https://doi.org/10.1089/ees.2021.0067

    Article  Google Scholar 

  30. Sakai S, Ehara M, Tseng IC, Yamaguchi T, Brauer SL, Cadillo-Quiroz H, Zinder SH, Imachi H (2012) Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int J Syst Evol Microbiol 62:1389–1395. https://doi.org/10.1099/ijs.0.035048-0

    Article  Google Scholar 

  31. Li Y, Yang G, Li L, Sun Y (2018) Bioaugmentation for overloaded anaerobic digestion recovery with acid-tolerant methanogenic enrichment. Waste Manage 79:744–751. https://doi.org/10.1016/j.wasman.2018.08.043

    Article  Google Scholar 

  32. Ting HNJ, Lin L, Cruz RB, Chowdhury B, Karidio I, Zaman H, Dhar BR (2020) Transitions of microbial communities in the solid and liquid phases during high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresour Technol 317:123951. https://doi.org/10.1016/j.biortech.2020.123951

    Article  Google Scholar 

  33. Han Y, Green H, Tao W (2020) Reversibility of propionic acid inhibition to anaerobic digestion: Inhibition kinetics and microbial mechanism. Chemosphere 255:126840. https://doi.org/10.1016/j.chemosphere.2020.126840

    Article  Google Scholar 

  34. Barredo MS, Evison LM (1991) Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl Environ Microbiol 57:1764–1769. https://doi.org/10.1128/aem.57.6.1764-1769.1991

    Article  Google Scholar 

  35. Cheng L, Qiu TL, Li X, Wang WD, Deng Y, Yin XB, Zhang H (2008) Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field. China FEMS Microbiol Lett 285:65–71. https://doi.org/10.1111/j.1574-6968.2008.01212.x

    Article  Google Scholar 

  36. Tian J, Wang Y, Dong X (2010) Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil. Int J Syst Evol Microbiol 60:2165–2169. https://doi.org/10.1099/ijs.0.019273-0

    Article  Google Scholar 

  37. Li WW, Khalid H, Zhu Z, Zhang RH, Liu GQ, Chen C, Thorin E (2018) Methane production through anaerobic digestion: participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl Energy 226:1219–1228. https://doi.org/10.1016/j.apenergy.2018.05.055

    Article  Google Scholar 

  38. Zhao JY, Hu B, Dolfing J, Li Y, Tang YQ, Jiang Y, Chi CQ, Xing J, Nie Y, Wu XL (2021) Thermodynamically favorable reactions shape the archaeal community affecting bacterial community assembly in oil reservoirs. Sci Total Environ 781:146506. https://doi.org/10.1016/j.scitotenv.2021.146506

    Article  Google Scholar 

  39. Zellner G, Boone DR, Keswani J, Whitman WB, Woese CR, Hagelstein A, Tindall BJ, Stackebrandt E (1999) Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen. nov., comb. nov. and Methanofollis liminatans comb. nov. and description of a new strain of Methanofollis liminatans. Int J Syst Bacteriol 49(1):247–255. https://doi.org/10.1099/00207713-49-1-247

    Article  Google Scholar 

  40. Cadillo-Quiroz H, Brauer SL, Goodson N, Yavitt JB, Zinder SH (2014) Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands. Int J Syst Evol Microbiol 64:1473–1480. https://doi.org/10.1099/ijs.0.059964-0

    Article  Google Scholar 

  41. Savant DV, Shouche YS, Prakash S, Ranade DR (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52:1081–1087. https://doi.org/10.1099/00207713-52-4-1081

    Article  Google Scholar 

  42. Iino T, Mori K, Suzuki KI (2010) Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int J Syst Evol Microbiol 60:2563–2566. https://doi.org/10.1099/ijs.0.020131-0

    Article  Google Scholar 

  43. Doerfert SN, Reichlen M, Iyer P, Wang M, Ferry JG (2009) Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol 59:1064–1069. https://doi.org/10.1099/ijs.0.003772-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Human Resource Program for Sustainable Environment in the 4th Industrial Revolution Society grant (BrainKorea21 Four) funded by the Ministry of Education (MoE) of the Korean government (No. 5199990214041). This research was financially supported by the Ministry of Environment of the Korean government as Waste to Energy-Recycling Human Resource Development Project (No. YL-WE-21-002).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SK; methodology: SK; formal analysis and investigation: SK, and EK; writing—original draft preparation: SK; writing—review and editing: EK; visualization: SK; software: SK; validation: SK, and EK; funding acquisition: SH; supervision: SH.

Corresponding author

Correspondence to Seokhwan Hwang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, E. & Hwang, S. Methanogenic diversity changes in full-scale anaerobic digesters by co-digestion of food waste and sewage sludge. J Mater Cycles Waste Manag 24, 2669–2676 (2022). https://doi.org/10.1007/s10163-022-01482-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01482-x

Keywords

Navigation