Skip to main content
Log in

Characteristics of PVC pyrolysis products under electric field

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This paper studied the effect of dielectric barrier discharge (DBD) on pyrolysis product characteristics of polyvinyl chloride (PVC) through experimentation, exploring PVC pyrolysis treatment with a new idea. Through characterization and analysis of pyrolysis products, the discharge obviously affected the pyrolysis products of PVC. It increased the carbon residue rate of PVC pyrolysis products and the H/C ratio of carbonized products; the said rate increased by 7.02% when the discharge voltage reached 20 kV. Meanwhile, from the SEM and BET analyses of carbonized products, the microstructure and electrical conductivity of these products could be improved by discharge. Pore volume of the carbonized products increased by 39.3%, 48.2% respectively, and the average pore diameter of carbonized products increased by 40.4%. Furthermore, the composition of tar products of PVC pyrolysis could be changed. The effect of 20 kV discharge would entail a decrease in aromatic content by 11.48%. Overall, this paper provided a thinking to improve PVC pyrolysis products and a reference for better recycling of PVC waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brignon JM (2021) Costs and benefits of recycling PVC contaminated with the legacy hazardous plasticizer DEHP. Waste Manag Res 39(9):1185–1192. https://doi.org/10.1177/0734242x211006755

    Article  Google Scholar 

  2. Wu J, Chen T, Luo X et al (2014) TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS. Waste Manag 34(3):676–682

    Article  Google Scholar 

  3. Frne A, Miliute-Plepiene J, Almasi AM et al (2019) PVC waste treatment in the Nordic countries. Nordic Council of Minister, Copenhagen

    Book  Google Scholar 

  4. Ye L, Li T, Hong L (2021) Co-pyrolysis of Fe3O4-poly (vinyl chloride) (PVC) mixtures: mitigation of chlorine emissions during PVC recycling. Waste Manag 126:832–842

    Article  Google Scholar 

  5. Zhang JP, Zhang CC, Zhang FS (2021) A novel process for waste polyvinyl chloride recycling: plant growth substrate development. J Environ Chemi Eng 9(4):105475

    Article  Google Scholar 

  6. Zulfi A, Rezeki YA, Edikresnha D et al (2018) Synthesis of fibers and particles from polyvinyl chloride (PVC) waste using electrospinning. Iop Conf 367:012014

    Google Scholar 

  7. Qi Y, He J et al (2018) A novel treatment method of PVC-medical waste by near-critical methanol: dechlorination and additives recovery. Waste manag 80:1–9

    Article  Google Scholar 

  8. Shallari S (2021) Some aspects of the thermochemical route for the valorization of plastic wastes, part I: reduction of iron oxides by polyvinyl chloride (PVC). Materials 14(15):4129

    Article  Google Scholar 

  9. Jie Y, Sun L, Ma C et al (2016) Thermal degradation of PVC: a review. Waste Manag 48:300–314

    Article  Google Scholar 

  10. Li W, Li Y (2022) Selective flotation separation of polycarbonate from plastic mixtures based on Fenton treatment combined with ultrasonic. J Mater Cycles Waste Manag 24(3):917–926

    Article  Google Scholar 

  11. Yin F, Zhuang Q, Chang T et al (2021) Study on pyrolysis characteristics and kinetics of mixed plastic waste. J Mater Cycles Waste Manag 23(6):1984–1994

    Article  Google Scholar 

  12. Liu H, Wang C, Zhang J et al (2020) Pyrolysis kinetics and thermodynamics of typical plastic waste. Energy Fuels 34(2):2385–2390

    Article  Google Scholar 

  13. Ji M, Chen L, Que J et al (2020) Effects of transition metal oxides on pyrolysis properties of PVC—ScienceDirect. Process Saf Environ Prot 140:211–220

    Article  Google Scholar 

  14. Han Z, Li J, Gu T et al (2021) Effects of torrefaction on the formation and distribution of dioxins during wood and PVC pyrolysis: an experimental and mechanistic study. J Anal Appl Pyrolysis 157:105240

    Article  Google Scholar 

  15. Srour H, Devers E, Mekki-Berrada A et al (2021) Regeneration of an aged hydrodesulfurization catalyst: conventional thermal vs non-thermal plasma technology. Fuel 306:121674

    Article  Google Scholar 

  16. Ulejczyk B, Nogal U, Motek M et al (2022) Efficient plasma technology for the production of green hydrogen from ethanol and water. Energies 15(8):1–14

    Article  Google Scholar 

  17. Masiello M, Somma S, Porto CL et al (2021) Plasma technology increases the efficacy of prothioconazole against Fusarium graminearum and Fusarium proliferatum contamination of maize (Zea mays) seedlings. Int J Mol Sci 22(17):9301

    Article  Google Scholar 

  18. Long Y, Yuan C, Wang X et al (2021) Dielectric barrier discharge plasma-assisted modification of g-C3N4/Ag2O/TiO2-NRs composite enhanced photoelectrocatalytic activity. J Environ Sci 104:113–127

    Article  Google Scholar 

  19. Shafique A, Rangasamy VS, Vanhulsel A et al (2021) Dielectric barrier discharge (DBD) plasma coating of sulfur for mitigation of capacity fade in lithium-sulfur batteries. ACS Appl Mater Interfaces 13(24):28072–28089

    Article  Google Scholar 

  20. Su Z, Zong H, Liang H et al (2022) Characteristics of a dielectric barrier discharge plasma actuator driven by pulsed-DC high voltage. J Phys D Appl Phys 55(7):075203

    Article  Google Scholar 

  21. Song H, Dm A, Hwa B et al (2021) An insightful analysis of dimethyl phthalate degradation by the collaborative process of DBD plasma and Graphene-WO3 nanocomposites. Chemosphere 291(2):132774

    Google Scholar 

  22. Ksa B, Rm C, Ning W et al (2021) Degradation of sulfamethoxazole (SMX) by water falling film DBD plasma/persulfate: reactive species identification and their role in SMX degradation. Chem Eng J 431(1):133916

    Google Scholar 

  23. Liu Y, Dou L, Zhou R et al (2021) Liquid-phase methane bubble plasma discharge for heavy oil processing: insights into free radicals-induced hydrogenation. Energy Convers Manag 250:114896

    Article  Google Scholar 

  24. Ma F, Zhang S, Li P et al (2020) Investigation on the role of the free radicals and the controlled degradation of chitosan under solution plasma process based on radical scavengers. Carbohyd Polym 257(5):117567

    Google Scholar 

  25. Ma H, Yuan C, Wang X et al (2021) Deposition of CeO2 on TiO2 nanorods electrode by dielectric barrier discharge plasma to enhance the photoelectrochemical performance in high chloride salt system. Sep Purif Technol 276:119252

    Article  Google Scholar 

  26. Tian Z, Liu W, Yu Q et al (2021) Pyrolysis and carbonization of polyvinyl chloride under electric field: a computational study. Chem Phys Lett 770:138450

    Article  Google Scholar 

  27. Hadi FM, Ali RA, Al-Rubaiee AA (2020) Simulation analyses and investigation of the induced electric field and Ar-Hg mixture on the gas discharge processes. Al-Mustansiriyah J Sci 31(3):126

    Article  Google Scholar 

  28. Feng XU, Wang YM, Fan LI et al (2021) Hydrogen production by the steam reforming and partial oxidation of methane under the dielectric barrier discharge. J Fuel Chem Technol 49(3):367–373

    Article  Google Scholar 

  29. Sławomir J, Marcel Z (2018) Energy efficiency of an ozone generation process in oxygen. analysis of a pulsed DBD system. Vacuum 155:29–37

    Article  Google Scholar 

  30. Li S, Chen H, Wang X et al (2020) Catalytic degradation of clothianidin with graphene/TiO 2 using a dielectric barrier discharge (DBD) plasma system. Environ Sci Pollut Res 27(23):29599–29611

    Article  Google Scholar 

  31. López A, Marco ID, Caballero BM et al (2011) Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Process Technol 92(2):253–260

    Article  Google Scholar 

  32. Zhang KY, Yun-Fei WU, Wang DC et al (2021) Synergistic effect of co-pyrolysis of pre-dechlorination treated PVC residue and Pingshuo coal. J Fuel Chem Technol 49(8):1086–1094

    Article  Google Scholar 

  33. Dan LA, Sl A, Ping WA et al (2021) Study on the pyrolysis behaviors of mixed waste plastics—ScienceDirect. Renew Energy 173:662–674

    Article  Google Scholar 

  34. Fan BG, Jia L, Han F et al (2019) Study on magnesium slag desulfurizer modified by additives in quenching hydration. J Mater Cycles Waste Manag 21(5):1211–1223

    Article  Google Scholar 

  35. Kalak T, Dudczak-Haabuda J, Yu T et al (2021) Effective bioremoval of Fe(III) ions using paprika (Capsicum annuum L.) pomace generated in the food industry. J Mater Cycles Waste Manag 21:248–258

    Article  Google Scholar 

  36. Gui B, Yu Q, Dan W et al (2013) Nascent tar formation during polyvinylchloride (PVC) pyrolysis. Proc Combust Inst 34(2):2321–2329

    Article  Google Scholar 

  37. Wu QF, Zhang FS (2012) A clean process for activator recovery during activated carbon production from waste biomass. Fuel 94(1):426–432

    Article  Google Scholar 

  38. Premalatha N, Prathiba R, Miranda MA et al (2021) Pyrolysis of polypropylene waste using sulfonated carbon catalyst synthesized from sugarcane bagasse. J Mater Cycles Waste Manag 23(3):1002–1014

    Article  Google Scholar 

  39. Sahoo K, Gupta A, Chakraborty JP (2021) A comparative study on valuable products: bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. J Mater Cycles Waste Manag 23:186–204

    Article  Google Scholar 

  40. Singh G, Varma AK, Almas S et al (2019) Pyrolysis kinetic study of waste milk packets using thermogravimetric analysis and product characterization. J Mater Cycles Waste Manag 21(6):1350–1360

    Article  Google Scholar 

  41. Sureshbabu P, Azeez S, Chaudhary P et al (2019) tert-Butyl nitrite promoted transamidation of secondary amides under metal and catalyst free conditions. Org Biomol Chem 17(4):845–850

    Article  Google Scholar 

  42. Kuznetsov ML, Pombeiro A (2003) Theoretical study of redox induced isomerizations, structure and bonding of nitrile, isocyanide and carbonyl complexes of rhenium. Dalton Trans 4:738–747

    Article  Google Scholar 

  43. Shamshirgar AS, Hernández RER, Tewari GC et al (2020) Layered structure of alumina/graphene-augmented-inorganic-nanofibers with directional electrical conductivity. Carbon 167:634–645

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijun Liu or Shuhua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Liu, W., Zhang, S. et al. Characteristics of PVC pyrolysis products under electric field. J Mater Cycles Waste Manag 24, 2270–2279 (2022). https://doi.org/10.1007/s10163-022-01474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01474-x

Keywords

Navigation