Skip to main content

Utilization of waste from the silicon carbide grinding sludge and stone sludge as source of silicon aluminum for the synthesis of the amine functional mesoporous humidity control material

Abstract

This study outlines the synthesis of low-cost mesoporous silica nanomaterials (MSN) from stone sludge (SS) and silicon carbide grinding sludge (SiCGS). We also discuss the influence of grafting surface grafted amine functional groups onto mesoporous silica nanomaterials (AFGMSN) under reflux conditions. The texture and composition of the materials were characterized using X-ray powder diffraction (XRD), N2 adsorption–desorption isotherms, and field emission scanning electron microscopy (SEM). AFMSN was also analyzed using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and solid-state 29Si nuclear magnetic resonance (29Si MAS NMR). We also examined the dehumidification performance of AFGMSN in high-humidity environments. The proposed synthesis method resulted in an ordered two-dimensional hexagonal MCM-41 carrier with water vapor adsorption capacity of 45.75 g/m2. This research provides an economical approach to the recovery and recycling of mixed industrial silicon carbide grinding sludge and stone sludge, rich in silicon and aluminum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Availability of data and materials

All data generated or analyzed during this study are available from the corresponding author upon request.

References

  1. Hu Z, Zheng S, Jia M, Dong X, Sun Z (2017) Preparation and characterization of novel diatomite/ground calcium carbonate composite humidity control material. Adv Powder Technol 28(5):1372–1381. https://doi.org/10.1016/j.apt.2017.03.005

    Article  Google Scholar 

  2. Vu DH, Wang KS, Bac BH, Nam BX (2013) Humidity control materials prepared from diatomite and volcanic ash. Constr Build Mater 38:1066–1072. https://doi.org/10.1016/j.conbuildmat.2012.09.040

    Article  Google Scholar 

  3. Maddison M, Mauring T, Kirsimäe K, Mander Ü (2009) The humidity buffer capacity of clay–sand plaster filled with phytomass from treatment wetlands. Build Environ 44(9):1864–1868. https://doi.org/10.1016/j.buildenv.2008.12.008

    Article  Google Scholar 

  4. Ugazio E, Gastaldi L, Brunella V, Scalarone D, Jadhav SA, Oliaro-Bosso S, Zonari D, Berlier G, Miletto I, Sapino S (2016) Thermoresponsive mesoporous silica nanoparticles as a carrier for skin delivery of quercetin. Int J Pharm 511:446–454. https://doi.org/10.1016/j.ijpharm.2016.07.024

    Article  Google Scholar 

  5. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullenn SB, Higgins JB, Schlenker J (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843. https://doi.org/10.1021/JA00053A020

    Article  Google Scholar 

  6. Khalil KM, Elhamdy WA, Abd-El-Aziz AS (2020) Direct formation of LaFeO3/MCM− 41 nanocomposite catalysts and their catalytic reactivity for conversion of isopropanol. Mater Chem Phys 254:123412. https://doi.org/10.1016/j.matchemphys.2020.123412

    Article  Google Scholar 

  7. Mercier L, Pinnavaia TJ (1998) Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg (II) uptake. Environ Sci Technol 32(18):2749–2754. https://doi.org/10.1021/es970622t

    Article  Google Scholar 

  8. Lu D, Xu S, Qiu W, Sun Y, Liu X, Yang J, Ma J (2020) Adsorption and desorption behaviors of antibiotic ciprofloxacin on functionalized spherical MCM-41 for water treatment. J Clean Prod 264:121644. https://doi.org/10.1016/j.jclepro.2020.121644

    Article  Google Scholar 

  9. Salestan SK, Taghizadeh M (2019) The effect of impurity on the separation of CO2 from N2 by MCM-41: a simulation study. Chem Phys 524:124–130. https://doi.org/10.1016/j.chemphys.2019.05.014

    Article  Google Scholar 

  10. Kimura T, Suzuki M, Maeda M, Tomura S (2006) Water adsorption behavior of ordered mesoporous silicas modified with an organosilane composed of hydrophobic alkyl chain and hydrophilic polyethylene oxide groups. Microporous Mesoporous Mater 95:213–219. https://doi.org/10.1016/j.micromeso.2006.05.027

    Article  Google Scholar 

  11. Antochshuk V, Olkhovyk O, Jaroniec M, Park IS, Ryoo R (2003) Benzoylthiourea-modified mesoporous silica for mercury (II) removal. Langmuir 19(7):3031–3034. https://doi.org/10.1021/la026739z

    Article  Google Scholar 

  12. Dai X, Qiu F, Zhou X, Long Y, Li W, Tu Y (2014) Amino-functionalized MCM-41 for the simultaneous electrochemical determination of trace lead and cadmium. Electrochim Acta 144:161–167. https://doi.org/10.1016/j.electacta.2014.08.093

    Article  Google Scholar 

  13. Liou TH (2011) A green route to preparation of MCM-41 silicas with well-ordered mesostructure controlled in acidic and alkaline environments. Chem Eng J 171(3):1458–1468. https://doi.org/10.1016/j.cej.2011.05.074

    Article  Google Scholar 

  14. Zhou C, Gao Q, Luo W, Zhou Q, Wang H, Yan C, Duan P (2015) Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash. J Taiwan Inst Chem Eng 52:147–157. https://doi.org/10.1016/j.jtice.2015.02.014

    Article  Google Scholar 

  15. Du C, Yang H (2012) Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials. J Colloid Interface Sci 369(1):216–222. https://doi.org/10.1016/j.jcis.2011.12.041

    Article  Google Scholar 

  16. Chen J, Lu X (2018) Synthesis and characterization of zeolites NaA and NaX from coal gangue. J Mater Cycles Waste Manag 20(1):489–495. https://doi.org/10.1007/s10163-017-0605-5

    Article  Google Scholar 

  17. Kordatos K, Ntziouni A, Iliadis L, Kasselouri-Rigopoulou V (2013) Utilization of amorphous rice husk ash for the synthesis of ZSM-5 zeolite under low temperature. J Mater Cycles Waste Manag 15(4):571–580. https://doi.org/10.1007/s10163-013-0141-x

    Article  Google Scholar 

  18. Zhang C, Li S (2018) Utilization of iron ore tailing for the synthesis of zeolite A by hydrothermal method. J Mater Cycles Waste Manag 20(3):1605–1614. https://doi.org/10.1007/s10163-018-0724-7

    Article  Google Scholar 

  19. Maatoug N, Delahay G, Tounsi H (2018) Valorization of vitreous China waste to EMT/FAU, FAU and Na-P zeotype materials. Waste Manag 74:267–278. https://doi.org/10.1016/j.wasman.2017.12.014

    Article  Google Scholar 

  20. Abid R, Delahay G, Tounsi H (2019) Preparation of LTA, HS and FAU/EMT intergrowth zeolites from aluminum scraps and industrial metasilicate. J Mater Cycles Waste Manag 21(5):1188–1196. https://doi.org/10.1007/s10163-019-00873-x

    Article  Google Scholar 

  21. Ding H, Li J, Gao Y, Zhao D, Shi D, Mao G, Liu S, Tan X (2015) Preparation of silica nanoparticles from waste silicon sludge. Powder Technol 284:231–236. https://doi.org/10.1016/j.powtec.2015.06.063

    Article  Google Scholar 

  22. Sadek HEH, Hessien MA, Abd El-Shakour ZA, Taha MA, Khattab RM (2021) The effect of sintering on the properties of magnesia-granite sludge ceramics shaped by temperature-induced forming. J Mater Cycles Waste Manag 11:264–273. https://doi.org/10.1016/j.jmrt.2021.01.016

    Article  Google Scholar 

  23. Shariatinia Z, Pourzadi N (2021) Designing novel anticancer drug release vehicles based on mesoporous functionalized MCM-41 nanoparticles. J Mol Struct 1242:130754. https://doi.org/10.1016/j.molstruc.2021.130754

    Article  Google Scholar 

  24. Brezoiu AM, Deaconu M, Nicu I, Vasile E, Mitran RA, Matei C, Berger D (2019) Heteroatom modified MCM-41-silica carriers for Lomefloxacin delivery systems. Microporous Mesoporous Mater 275:214–222. https://doi.org/10.1016/j.micromeso.2018.08.031

    Article  Google Scholar 

  25. de Oliveira TF, da Silva MLP, Lopes-Moriyama AL, de Souza CP (2021) Facile preparation of ordered mesoporous Nb, Ta-MCM-41 by hydrothermal direct synthesis using columbite ore as metal source. Ceram Int 47(20):29509–29514. https://doi.org/10.1016/j.ceramint.2021.07.120

    Article  Google Scholar 

  26. Dardir FM, Ahmed EA, Soliman MF, Othman SI, Allam AA, Alwail MA, Abukhadra MR (2021) Synthesis of chitosan/Al-MCM-41 nanocomposite from natural microcline as a carrier for levofloxacin drug of controlled loading and release properties; equilibrium, release kinetic, and cytotoxicity. Colloids Surf A Physicochem Eng Asp 624:126805. https://doi.org/10.1016/j.colsurfa.2021.126805

    Article  Google Scholar 

  27. de Oliveira Freitas LB, de Melo CL, Faria JAQA, dos Santos VM, Resende JM, Leal AS, de Sousa EMB (2017) Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous Mesoporous Mater 242:271–283. https://doi.org/10.1016/j.micromeso.2017.01.036

    Article  Google Scholar 

  28. Janardhan HL, Shanbhag GV, Halgeri AB (2014) Shape-selective catalysis by phosphate modified ZSM-5: Generation of new acid sites with pore narrowing. Appl Catal B 471:12–18. https://doi.org/10.1016/j.apcata.2013.11.029

    Article  Google Scholar 

  29. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  30. Rouquerol F, Rouquerol J, Sing KSW, Maurin G, Llewellyn P (2014) 1—Introduction. In: Adsorption by powders and porous solids (second edition). Academic Press, Oxford

  31. Wang W, Yang X, Fang Y, Ding J (2009) Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid–liquid phase change materials. Appl Energy 86:170–174. https://doi.org/10.1016/j.apenergy.2007.12.003

    Article  Google Scholar 

  32. Thambiliyagodage CJ, Cooray VY, Perera IN, Wijesekera RD (2018) Eco-friendly porous carbon materials for wastewater treatment. Int J Sustain Built Environ 2018:252–260. https://doi.org/10.1007/978-981-13-9749-3_23

    Article  Google Scholar 

  33. Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683. https://doi.org/10.1146/annurev.physchem.59.032607.093739

    Article  Google Scholar 

  34. Wang X, Chen L, Guo Q (2015) Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture. Chem Eng J 260:573–581. https://doi.org/10.1016/j.cej.2014.08.107

    Article  Google Scholar 

  35. Shabir J, Garkoti C, Sah D, Mozumdar S (2018) Development of amine functionalized wrinkled silica nanospheres and their application as efficient and recyclable solid base catalyst. Catal Lett 148(1):194–204. https://doi.org/10.1007/s10562-017-2235-x

    Article  Google Scholar 

  36. Kumar Y, Shabir J, Gupta P, Kumar LS (2021) Design and development of amine functionalized mesoporous cubic silica particles: a recyclable catalyst for knoevenagel condensation. Catal Lett. https://doi.org/10.1007/s10562-021-03749-8

    Article  Google Scholar 

  37. Shah PV, Rajput SJ (2017) A comparative in vitro release study of raloxifene encapsulated ordered MCM-41 and MCM-48 nanoparticles: a dissolution kinetics study in simulated and biorelevant media. J Drug Deliv Sci Technol 41:31–44. https://doi.org/10.1016/j.jddst.2017.06.015

    Article  Google Scholar 

  38. Ahmed S, Ramli A, Yusup S (2012) Effect of TEPA loading on the physicochemical properties of Si-MCM-41 by impregnation method. AIP Conf Proc 1482:599–604. https://doi.org/10.1063/1.4757542

    Article  Google Scholar 

  39. Cao M, Sun S, Long C, Luo J, Zou H, Wu D (2021) New bi-functionalized ordered mesoporous material as heterogeneous catalyst for production of 5-hydroxymethylfurfural. Microporous Mesoporous Mater 312:110709. https://doi.org/10.1016/j.micromeso.2020.110709

    Article  Google Scholar 

  40. Usgodaarachchi L, Thambiliyagodage C, Wijesekera R, Bakker MG (2021) Synthesis of mesoporous silica nanoparticles derived from rice husk and surface-controlled amine functionalization for efficient adsorption of methylene blue from aqueous solution. Curr Res Green Sustain Chem 4:100116. https://doi.org/10.1016/j.crgsc.2021.100116

    Article  Google Scholar 

  41. Liu Y, Li C, Peyravi A, Sun Z, Zhang G, Rahmani K, Zheng S, Hashisho Z (2021) Mesoporous MCM-41 derived from natural Opoka and its application for organic vapors removal. J Hazard Mater 408:124911. https://doi.org/10.1016/j.jhazmat.2020.124911

    Article  Google Scholar 

  42. Rahimi Z, Zinatizadeh AA, Zinadini S, van Loosdrecht M, Younesi H (2021) A new anti-fouling polysulphone nanofiltration membrane blended by amine-functionalized MCM-41 for post treating waste stabilization pond’s effluent. J Environ Manage 290:112649. https://doi.org/10.1016/j.jenvman.2021.112649

    Article  Google Scholar 

  43. Otalvaro JO, Avena M, Brigante M (2019) Adsorption of organic pollutants by amine functionalized mesoporous silica in aqueous solution. Effects of pH, ionic strength and some consequences of APTES stability. J Environ Chem Eng 7(5):103325. https://doi.org/10.1016/j.jece.2019.103325

    Article  Google Scholar 

  44. Fellenz N, Perez-Alonso FJ, Martin PP, García-Fierro JL, Bengoa JF, Marchetti SG, Rojas S (2017) Chromium (VI) removal from water by means of adsorption-reduction at the surface of amino-functionalized MCM-41 sorbents. Microporous Mesoporous Mater 239:138–146. https://doi.org/10.1016/J.MICROMESO.2016.10.012

    Article  Google Scholar 

  45. Meiouet F, Felix G, Taibi H, Hommel H, Legrand AP (1991) New synthesis of alkyldihydrosilanes and their applications in modification of silica gel. Chromatographia 31(7):335–341. https://doi.org/10.1007/BF02262188

    Article  Google Scholar 

  46. Kailasam K, Fels A, Müller K (2009) Octadecyl grafted MCM-41 silica spheres using trifunctionalsilane precursors–preparation and characterization. Microporous Mesoporous Mater 117(1–2):136–147. https://doi.org/10.1016/j.micromeso.2008.06.014

    Article  Google Scholar 

  47. Deshpande RS, Sharp-Goldman SL, Bocarsly AB (2002) Thermodynamics and kinetics of CO2 adsorption on dehydrated palladium/cobalt-based cyanogels: a highly selective, fully reversible system for CO2 storage. Langmuir 18(20):7694–7698. https://doi.org/10.1021/la025821r

    Article  Google Scholar 

  48. Sanz R, Calleja G, Arencibia A, Sanz-Perez ES (2015) CO2 capture with pore-expanded MCM-41 silica modified with amino groups by double functionalization. Microporous Mesoporous Mater 209:165–171. https://doi.org/10.1016/j.micromeso.2014.10.045

    Article  Google Scholar 

  49. Lin YW, Cheng TW, Lo KW, Chen CY, Lin KL (2021) Synthesis and characterization of a mesoporous Al-MCM-41 molecular sieve material and its moisture regulation performance in water molecule adsorption/desorption. Microporous Mesoporous Mater 310:110643. https://doi.org/10.1016/j.micromeso.2020.110643

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Science and Technology, Taiwan, for supporting this research financially (Contract No. MOST-107-2221-E-197-002-MY3).

Author information

Authors and Affiliations

Authors

Contributions

Y-WL: Writing—original draft. Methodology. onceptualization. W-HL: Supervision. T-WC: Supervision. C-YC: Validation, Investigation, Methodology. K-LL: Resources, writing-commenting and editing. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Kae-Long Lin.

Ethics declarations

Conflict of interests

The authors declare they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, YW., Lee, WH., Lin, KL. et al. Utilization of waste from the silicon carbide grinding sludge and stone sludge as source of silicon aluminum for the synthesis of the amine functional mesoporous humidity control material. J Mater Cycles Waste Manag 24, 1009–1019 (2022). https://doi.org/10.1007/s10163-022-01376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01376-y

Keywords

  • Silicon carbide grinding sludge
  • Stone sludge
  • Mesoporous silica nanomaterial
  • Amine functional group
  • Grafted