Skip to main content

Advertisement

Log in

Evaluation of recycled garnet and aluminum-oxides particles in preparation of refractory cement: thermo-physical performance

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This manuscript investigated the use of discarded industrial abrasives (garnet and Al2O3-particles) for the manufacture of geopolymer-matrix composites. The discarded industrial abrasives were incorporated in 5, 10, and 20 wt% in geopolymer pastes, and their performance was evaluated both at room temperature and after being exposed to 1200 °C. The compressive strength, modulus of rupture, microhardness, density, porosity, and microstructure by SEM and XRD were studied. The results showed that the microstructure of the geopolymer paste is reorganized after exposure to 1200 °C, the geopolymers lose amorphous phase and new crystalline phases such as leucite and kalsilite are formed, which cause a good mechanical performance reaching up to 65 MPa of compressive strength. At room temperature in geopolymer composites with the incorporation of wastes-particle, the compressive strength was not affected. However, after exposure to 1200 °C, there was a loss in the mechanical strength with maximum values of 20 MPa for 20%-Al2O3 composite and 55 MPa for 5%-garnet composite. The microstructure analysis reveals cracking and porosity in composites by thermal treatment. The high porosity and cracking generated by thermal processes mean that its flexural strength does not exceed 7 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mustafa M, Bakri A, Mohammed H, Kamarudin H, Niza I, Zarina Y (2011) Review on fly ash-based geopolymer concrete without Portland Cement. J Eng Technol Res 3(1):1–4. https://doi.org/10.5897/JETR.9000070

    Article  Google Scholar 

  2. Cheng T, Chiu J (2003) Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng 16:205–210. https://doi.org/10.1016/S0892-6875(03)00008-6

    Article  Google Scholar 

  3. Haeng HU, Sankar K, Kriven W and Musil S (2014) Rice husk ash as a silica source in a geopolymer formulation. In Kriven W (ed) Developments in strategic materials and computational design V: a collection of papers Presented at the 38th International Conference on advanced ceramics and composites. https://doi.org/10.1002/9781119040293.ch7

  4. Villaquirán-Caicedo MA, Mejía de Gutiérrez R (2021) Comparison of different activators for alkaline activation of construction and demolition wastes. Constr Build Mater 281:122599. https://doi.org/10.1016/j.conbuildmat.2021.122599

    Article  Google Scholar 

  5. Zaharaki D, Galetakis M, Komnitsas K (2016) Valorization of construction and demolition and industrial wastes through alkali activation. Constr Build Mater 121:686–693. https://doi.org/10.1016/j.conbuildmat.2016.06.051

    Article  Google Scholar 

  6. Zawrah M, Gado R, Feltin N, Ducourtieux S, Devoille L (2016) Recycling and utilization assessment of waste-fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf Environ Prot 103:237–251. https://doi.org/10.1016/j.psep.2016.08.001

    Article  Google Scholar 

  7. Robayo-Salazar R, Valencia-Saavedra M, de Gutiérrez R (2020) Construction and demolition waste (CDW) recycling as both binder and aggregates in alkali-activated materials: a novel re-use concept. Sustainability 12(14):5775. https://doi.org/10.3390/su12145775

    Article  Google Scholar 

  8. Mejía de Gutiérrez R, Villaquirán-Caicedo MA, Guzmán-Aponte L (2020) Alkali-activated metakaolin mortars using glass waste as fine aggregate: Mechanical and photocatalytic properties. Constr Build Mater 235:117510. https://doi.org/10.1016/j.conbuildmat.2019.117510

    Article  Google Scholar 

  9. Subaer J, Ekaputri J, Fansuri H, Abdullah MA (2017) The relationship between Vickers microhardness and compressive strength of functional surface geopolymers. AIP Conf Proc 1885(1):020170. https://doi.org/10.1063/1.5002382

    Article  Google Scholar 

  10. Bakri AM, Liyana J, Kamarudin H, Bnhussain M, Ruzaidi CM, Rafiza AR, Izzat AM (2013) Study on refractory materials application using geopolymer processing. Adv Sci Lett 19(1):221–223. https://doi.org/10.1166/asl.2013.4676

    Article  Google Scholar 

  11. Villaquirán-Caicedo MA, Mejía de Gutiérrez R, Gallego NC (2017) A novel MK-based geopolymer composite activated with rice husk ash and KOH : performance at high temperature. Mater Constr 67(326):1–13. https://doi.org/10.3989/mc.2017.02316

    Article  Google Scholar 

  12. Villaquirán-Caicedo MA, Mejía-de Gutiérrez R (2019) Mechanical and microstructural analysis of geopolymer composites based on metakaolin and recycled silica. J Am Ceram Soc 102:3653–3662. https://doi.org/10.1111/jace.16208

    Article  Google Scholar 

  13. Cheng TW, Lee ML, Ko MS, Ueng TH, Yang SF (2012) The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl Clay Sci 56:90–96. https://doi.org/10.1016/j.clay.2011.11.027

    Article  Google Scholar 

  14. Zhang J, Provis J, Feng D, Jaarsveld J (2008) Geopolymers for immobilization of Cr(6+), Cd(2+), and Pb(2+). J Hazard Mater 157(2–3):587–598. https://doi.org/10.1016/j.jhazmat.2008.01.053

    Article  Google Scholar 

  15. Li VC, Maalej M (1996) Toughening in cement-based composites. Part I: cement, mortar, and concrete. Cem Concr Compos 18(4):223–237. https://doi.org/10.1016/0958-9465(95)00028-3

    Article  Google Scholar 

  16. Duxson P, Lukey GC, Deventer JS (2007) Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J Mater Sci 42(9):3044–3054. https://doi.org/10.1007/s10853-006-0535-4

    Article  Google Scholar 

  17. Khan M, Ali M (2019) Improvement in concrete behavior with fly ash, silica fume, and coconut fibers. Constr Build Mater 203:174–187. https://doi.org/10.1016/J.CONBUILDMAT.2019.01.103

    Article  Google Scholar 

  18. Procolombia (2016) La industria Metalmecánica en Colombia. PROCOLOMBIA, [Online]. Available: https://compradores.procolombia.co/es/explore-oportunidades/industria-metalmec-nica?__cf_chl_jschl_tk__=2eb1c4887c5a8c961e8ea17d07b33b635fe4dd39-1621363102-0-Ab5cdRh9z2wUvWDk03mgCq6Qp3zesgu38ZvYbnS4jqlfokrIqSteXkD_2C-vn4VxMSJmdFUXBmIwFM3CoLCUxve4BhoCq8Imw. Accessed 23 July 2021

  19. Huseien GF, Sam AR, Shah KW, Budiea AM, Mirza J (2019) Utilizing spend garnets as sand replacement in alkali-activated mortars containing fly ash and GBFS. Constr Build Mater 225:132–145. https://doi.org/10.1016/j.conbuildmat.2019.07.149

    Article  Google Scholar 

  20. Villaquirán-Caicedo MA, Perea V, Ruiz JE, Mejia de Gutierrez R (2022) Mechanical, physical and thermoacoustic properties of geopolymer composites manufactured with lightweight particles. Ing y Compet 24(1):e20610985. https://doi.org/10.25100/iyc.v24i1.10985 (in press)

    Article  Google Scholar 

  21. Villaquirán-Caicedo MA, Rodríguez ED, Mejía de Gutierrez R (2015) Evaluación microestructural de geopolimeros basados en metacaolin y fuentes alternativas de silice expuestos a temperaturas altas. Ing Investig Tecnol XVI:113–122

    Google Scholar 

  22. Kovářík T, Rieger D, Kadlec J et al (2017) Thermomechanical properties of particle-reinforced geopolymer composite with various aggregate gradation of fine ceramic filler. Constr Build Mater 143:599–606. https://doi.org/10.1016/j.conbuildmat.2017.03.134

    Article  Google Scholar 

  23. Duxson P, Lukey GC, Jaarsveld JD (2007) The thermal evolution of metakaolin geopolymers: part 2—phase stability and structural development. J Non Cryst Solids 353(22–23):186–220. https://doi.org/10.1016/j.jnoncrysol.2007.02.050

    Article  Google Scholar 

  24. Bernal SA, Bejarano J, Garzón C, Mejía de Gutierrez R, Delvasto S, Rodríguez ED (2012) Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Compos Part B Eng 43(4):1919–1928. https://doi.org/10.1016/j.compositesb.2012.02.027

    Article  Google Scholar 

  25. Lemougna PN, Adediran A, Yliniemi J, Ismailov A, Levanen E et al (2020) Thermal stability of one-part metakaolin geopolymer composites containing a high volume of spodumene tailings and glass wool. Cem Concr Compos 114:103792. https://doi.org/10.1016/j.cemconcomp.2020.103792

    Article  Google Scholar 

  26. Zhang Y, Lv M, Chen D, Wu J (2007) Leucite crystallization kinetics with kalsilite as a transition phase. Mater Lett 61(14–15):2978–2981. https://doi.org/10.1016/j.matlet.2006.10.057

    Article  Google Scholar 

  27. Tie-song L, De-chang JI, Pei-gang HE, Mei-rong W (2009) Thermal-mechanical properties of short carbon fiber reinforced geopolymer matrix composites subjected to thermal load. J Cent South Univ Technol 16(6):881–886. https://doi.org/10.1007/s11771

    Article  Google Scholar 

  28. He PG, Jia D, Wang S (2013) Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor. J Eur Ceram Soc 33(4):689–698. https://doi.org/10.1016/j.jeurceramsoc.2012.10.019

    Article  Google Scholar 

  29. International Syalons (2021) Alumina. https://www.syalons.com/materials/alumina/. Accessed 27 July 2021

  30. Zhang H, Kodur V, Wu B, Cao L, Wang F (2016) Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr Build Mater 109:17–24. https://doi.org/10.1016/j.conbuildmat.2016.01.043

    Article  Google Scholar 

  31. Kong DL, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar, and concrete. Cem Concr Res 40(2):334–339. https://doi.org/10.1016/j.cemconres.2009.10.017

    Article  Google Scholar 

  32. Montoya-Quesada E, Villaquirán-Caicedo MA, Mejía de Gutiérrez R (2020) New glass-ceramic from ternary-quaternary mixtures based on Colombian industrial wastes: Blast furnace slag, cupper slag, fly ash and glass cullet. Bol la Soc Esp Ceram Vidr. https://doi.org/10.1016/j.bsecv.2020.11.009

    Article  Google Scholar 

  33. Kong DLY, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 40(2):334–339. https://doi.org/10.1016/j.cemconres.2009.10.017

    Article  Google Scholar 

  34. Montoya-Quesada E, Villaquirán-Caicedo MA, Gutiérrez R (2021) New glass-ceramic from ternary-quaternary mixtures based on Colombian industrial wastes: blast furnace slag, cupper slag, fly ash and glass cullet. Bol Soc Esp Ceram Vidr. https://doi.org/10.1016/j.bsecv.2020.11.009 (in press)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Universidad del Valle for funding the research through the Vicerrectoria de Investigaciones by financial project No. C.I. 21147

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, writing, editing: MV-C; methodology-original draft preparation: EH-R and resources-supervision: RMG.

Corresponding author

Correspondence to Mónica A. Villaquirán-Caicedo.

Ethics declarations

Competing interests

The author declares that they have no known competing financial interest or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Rengifo, E., Villaquirán-Caicedo, M.A. & de Gutiérrez, R.M. Evaluation of recycled garnet and aluminum-oxides particles in preparation of refractory cement: thermo-physical performance. J Mater Cycles Waste Manag 24, 775–783 (2022). https://doi.org/10.1007/s10163-022-01359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01359-z

Keywords

Navigation