Skip to main content
Log in

Use of fluff in a coking coal blend in a pilot scale

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Fluff is a shredder waste made up mostly of polymeric material generated in semi-integrated steel manufacturing plants, which is usually disposed of in landfills. This occurs because fluff has a complex composition due to the diverse origin of the scrap. As wastes with a residual heating value can be thermally reused, the present study evaluated applying fluff in metallurgical coking plants as an additive to mineral coal. The composition and particle size of the coarse and fine fractions of fluff were determined, and both currents are rich in materials with high calorific value. The fine fraction was selected due to the particle size suitable for use in coke ovens, and the calorific potential was determined (18.1 MJ/kg). Metallurgical analysis of the coke in pilot scale tests (ash and sulfur contents, as well as reactivity and mechanical strength of coke) revealed that up to 1% fluff might not compromise the blast furnace performance. Given the amount of steel produced in blast furnaces worldwide, such a strategy may considerably reduce the volume of fluff destined for landfills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lobato NCC, Villegas EA, Mansur MB (2015) Management of solid wastes from steelmaking and galvanizing processes: a brief review. Resour Conserv Recycl 102:49–57. https://doi.org/10.1016/j.resconrec.2015.05.025

    Article  Google Scholar 

  2. Nagel JR (2018) An analytic model for eddy current separation. Miner Eng 127:277–285. https://doi.org/10.1016/j.mineng.2018.08.025

    Article  Google Scholar 

  3. Jody BJ, Daniels EJ (2006) End-of-life vehicle recycling: the state of the art of resource recovery from shredder residue. Argonne Natl Lab ANL/ESD/07-8. https://publications.anl.gov/anlpubs/2007/02/58559.pdf

  4. Mirabile D, Pistelli MI, Marchesini M et al (2002) Thermal valorisation of automobile shredder residue: injection in blast furnace. Waste Manag 22:841–851. https://doi.org/10.1016/S0956-053X(02)00071-5

    Article  Google Scholar 

  5. Kusaka K, Iida S (2000) Sorting, compaction and solidification technologies for automobile shredder residue (ASR). JSAE Rev 21:549–554. https://doi.org/10.1016/S0389-4304(00)00073-4

    Article  Google Scholar 

  6. Fiore S, Ruffino B, Zanetti MC (2012) Automobile shredder residues in Italy: characterization and valorization opportunities. Waste Manag 32:1548–1559. https://doi.org/10.1016/j.wasman.2012.03.026

    Article  Google Scholar 

  7. Gent MR, Menéndez M, Muñiz H, Torno S (2015) Recycling of a fine, heavy fluff automobile shredder residue by density and differential fragmentation. Waste Manag 43:421–433. https://doi.org/10.1016/j.wasman.2015.06.010

    Article  Google Scholar 

  8. Joung HT, Cho SJ, Seo YC, Kim WH (2007) Status of recycling end-of-life vehicles and efforts to reduce automobile shredder residues in Korea. J Mater Cycles Waste Manag 9:159–166. https://doi.org/10.1007/s10163-007-0181-1

    Article  Google Scholar 

  9. Karagoz S, Aydin N, Simic V (2020) End-of-life vehicle management: a comprehensive review. J Mater Cycles Waste Manag 22:416–442. https://doi.org/10.1007/s10163-019-00945-y

    Article  Google Scholar 

  10. Ni F, Chen M (2015) Research on ASR in China and its energy recycling with pyrolysis method. J Mater Cycles Waste Manag 17:107–117. https://doi.org/10.1007/s10163-014-0232-3

    Article  Google Scholar 

  11. Plastics Europe (2018) Plastics—the Facts. https://plasticseurope.org/wp-content/uploads/2021/10/2018-Plastics-the-facts.pdf. Accessed 17 Jan 2022

  12. Edo M, Aracil I, Font R et al (2013) Viability study of automobile shredder residue as fuel. J Hazard Mater 260:819–824. https://doi.org/10.1016/j.jhazmat.2013.06.039

    Article  Google Scholar 

  13. Kim KH, Joung HT, Nam H et al (2004) Management status of end-of-life vehicles and characteristics of automobile shredder residues in Korea. Waste Manag 24:533–540. https://doi.org/10.1016/j.wasman.2004.02.012

    Article  Google Scholar 

  14. Alfa Laval Aalborg (2017) Poder calorifico inferior de combustíveis. http://www.aalborg-industries.com.br/downloads/poder-calorifico-inf.pdf. Accessed 17 Jan 2022

  15. Empresa de Pesquisa Energética (2008) Aproveitamento energético dos resíduos sólidos urbanos de Campo Grande, MS. DEN 06/08. https://cetesb.sp.gov.br/biogas/wp-content/uploads/sites/3/2014/01/mme_epe_aproveitamento_rsu_ms.pdf. Accessed 17 Jan 2022

  16. Oliveira SFA, Brunelli DD, Gonçalves JE et al (2014) Avaliação energética da biomassa de cana-de-açúcar em diferentes indústrias sucroenergéticas. Rev Process Químicos 8:43–51. https://doi.org/10.19142/rpq.v8i16.220

    Article  Google Scholar 

  17. Ludwig C, Hellweg S, Stucki S (2003) Municipal solid waste management. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  18. Mancini G, Tamma R, Viotti P (2010) Thermal process of fluff: Preliminary tests on a full-scale treatment plant. Waste Manag 30:1670–1682. https://doi.org/10.1016/j.wasman.2010.01.037

    Article  Google Scholar 

  19. European Environment Agency (2013) Typical charge for legal landfilling of non-hazardous municipal waste in EU member states and regions. https://www.eea.europa.eu/data-and-maps/figures/typical-charge-gate-fee-and

  20. Zhang M, Buekens A, Jiang X, Li X (2015) Dioxins and polyvinylchloride in combustion and fires. Waste Manag Res 33:630–643. https://doi.org/10.1177/0734242X15590651

    Article  Google Scholar 

  21. Carpenter AM (2010) Injection of coal and waste plastics in blast furnaces. IEA Clean Coal Centre, https://usea.org/publication/injection-coal-and-waste-plastics-blast-furnaces-ccc166

  22. Goto H, Ibaraki T, Kondoh H et al (2002) Plastics recycling by a coke-oven fromwaste plastics to chemical raw materials. Nippon Steel Tech Rep 86:10–13

    Google Scholar 

  23. Kato K, Nomura S, Uematsu H (2002) Development of waste plastics recycling process using coke ovens. ISIJ Int 42:S10–S13

    Article  Google Scholar 

  24. Kato K, Nomura S, Uematsu H (2003) Waste plastics recycling process using coke ovens. J Mater Cycles Waste Manag 5:98–101. https://doi.org/10.1007/s10163-003-0089-3

    Article  Google Scholar 

  25. Okuwaki A (2004) Feedstock recycling of plastics in Japan. Polym Degrad Stab 85:981–988. https://doi.org/10.1016/j.polymdegradstab.2004.01.023

    Article  Google Scholar 

  26. Annoni R, Souza PS, Petrániková M et al (2013) Submerged-arc welding slags: characterization and leaching strategies for the removal of aluminum and titanium. J Hazard Mater 244–245:335–341. https://doi.org/10.1016/j.jhazmat.2012.11.053

    Article  Google Scholar 

  27. Buekens A, Zhou X (2014) Recycling plastics from automotive shredder residues: a review. J Mater Cycles Waste Manag 16:398–414. https://doi.org/10.1007/s10163-014-0244-z

    Article  Google Scholar 

  28. Bethell PJ (2013) Economic factors affecting coal preparation: plant design worldwide and case studies illustrating economic impact. Coal Handb Towar Clean Prod 1:445–466. https://doi.org/10.1533/9780857097309.2.445

    Article  Google Scholar 

  29. Trouve G, Kauffmann A, Delfosse L (1998) Comparative thermodynamic and experimental study of some heavy metal behaviours during automotive shredder residues incineration. Waste Manag 18:301–307. https://doi.org/10.1016/S0956-053X(98)00040-3

    Article  Google Scholar 

  30. Carvalho LAL, Campos AMA, Assis PS (2021) Quality evaluation of metallurgical coke produced with sawdust and different mixtures of coal. REM 74:219–223

    Google Scholar 

  31. Nourreddine M (2007) Recycling of auto shredder residue. J Hazard Mater 139:481–490. https://doi.org/10.1016/j.jhazmat.2006.02.054

    Article  Google Scholar 

  32. Grigore M, Sakurovs R, French D, Sahajwalla V (2006) Influence of mineral matter on coke reactivity with carbon dioxide. ISIJ Int 46:503–512. https://doi.org/10.2355/isijinternational.46.503

    Article  Google Scholar 

  33. Nomura S, Kitaguchi H, Yamaguchi K, Naito M (2007) The characteristics of catalyst-coated highly reactive coke. ISIJ Int 47:245–253. https://doi.org/10.2355/isijinternational.47.245

    Article  Google Scholar 

  34. Diez MA, Alvarez R, Melendi S, Barriocanal C (2009) Feedstock recycling of plastic wastes in cokemaking. Coke Chem 52:464–466. https://doi.org/10.3103/S1068364X09100111

    Article  Google Scholar 

  35. Sakimoto N, Takanohashi T, Sakai K et al (2016) Effect of volume breakage due to DI measurement on pore structure in coke. ISIJ Int 56:1948–1955. https://doi.org/10.2355/isijinternational.ISIJINT-2015-388

    Article  Google Scholar 

  36. Kinch D (2021) Global steel output jumps 12% on year in June to 168 million mt: worldsteel. https://www.spglobal.com/platts/en/market-insights/videos/market-movers-asia/011722-china-india-omicron-oil-winter-olympics-indonesia-coal-steel-lithium-electric-vehicles-carbon-markets. Accessed 17 Jan 2022

Download references

Acknowledgements

The authors wish to acknowledge Gerdau and CNPq (PQ1C Grant Number 304018/2020-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Borges Mansur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratti, G.M.R., Detoni, I.d., de Souza Resende, G.P. et al. Use of fluff in a coking coal blend in a pilot scale. J Mater Cycles Waste Manag 24, 702–711 (2022). https://doi.org/10.1007/s10163-022-01352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01352-6

Keywords

Navigation