Skip to main content
Log in

Development of Mg/La-layered double hydroxide nanocomposites and application of recovered phosphorus from modelled biogas slurry

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Presently, a large amount of agriculture-produced sewage generally contains excessive phosphorus discharge and water eutrophication. However, it is difficult to recover phosphorus from biogas slurry. Among phosphorus recovery technologies, adsorption technology has more advantages, including its simple operation, low cost, high selectivity, and environmental friendliness. Furthermore, it is a type of technology with “mature” prospect. Highly efficient and cost-effective adsorbents are crucial to control eutrophication and recover phosphorus from biogas slurry. This study reports the synthesis of three nanocomposites of Mg/La-layered double hydroxide, Mg/Al-LDH, and Mg/Fe-layered double hydroxide. The effects of Mg/La-LDH materials synthesised with different La concentrations on phosphorus recovery from biogas slurry are discussed. It was found that Mg/La-LDH with low La concentration has better phosphorus adsorption than Mg/La-LDH with high La concentration. The maximum phosphorus adsorption capacities of 284.11 and 378.80 mg g−1 were achieved by La0.001 and La0.1 (Mg/La at molar ratios of 0.05/0.001 and 1.0/0.1, respectively) nanocomposites at pH 10.60–11.50. Their recovery rates in phosphorus solution reached 99.58% and 99.15%, respectively. Compared with that of other phosphorus adsorbents, the recovery efficiency of phosphorus from the modelled biogas slurry was significantly improved. Interlayer anion exchange between PO43− and CO32− of the hydrotalcite layer and surface complexation of stable complexes (LaPO4) and Mg3(PO4)2 were the predominant adsorption mechanisms under the studied solution. The special flower-like cluster structure of the layered double hydroxide promotes the formation of ionic bonds between PO43− and Mg2+/La3+, which is crucial for phosphorus adsorption. La0.001 and La0.1 materials can potentially enhance phosphorus recovery in biogas slurry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen ZL, Chen GY, Li JY (2019) Research progress on application of biogas slurry in agricultural production in China[J]. Jiangsu Agric Sci 47(8):1–6. https://doi.org/10.15889/j.issn.1002-1302.2019.08.001

    Article  Google Scholar 

  2. Jin SQ, Zhang B, Wu B, Han DM, Hu Y, Ren CC, Zhang CC, Wei X, Wu Y, Mol PJ, Reis S, Gu BJ, Chen J (2020) Decoupling livestock and crop production at the household level in China [J]. Nat Sustain 4:48–55. https://doi.org/10.1038/s41893-020-00596-0

    Article  Google Scholar 

  3. Zhou W, Wang ZC, Zong J, Wang GD, Sheng J (2020) Effects of biogas slurry combined with organic fertilizer on runoff loss of phosphorus and potassium in paddy field [J]. Soil Fertilizer Sci China 06:240–245. https://doi.org/10.11838/sfsc.1673-6257.19556

    Article  Google Scholar 

  4. Ding JT, Ma YR, Shen YJ, Cheng HS, Meng HB, Song LQ, Zhang PY (2019) Effect of corn stalk and biochar aerobic fermentation combined with biogas slurry spraying [J]. Trans CSAE 35(19):252–258. https://doi.org/10.11975/j.issn.1002-6819.2019.19.031

    Article  Google Scholar 

  5. Duan N, Zhou HY, Lin C, Li BF (2020) Nutrient management engineering mode of intensive pig farms [J]. China Biogas 38(01):53–58

    Google Scholar 

  6. Prapaspongsa T, Poulsen TG, Hansen JA, Christensen P (2009) Energy production, nutrient recovery and greenhouse gas emission potentials from integrated pig manure management systems [J]. Waste Manag Res 28(5):411–422. https://doi.org/10.1177/0734242X09338728

    Article  Google Scholar 

  7. Ma YR, Ding JT, Zhao LX, Meng HB, Shen YJ, Cheng HS, Wang J (2018) Advances in recycling and reuse of nitrogen from biogas slurry [J]. Environ Pollut Control 40(03):339–344. https://doi.org/10.15985/j.cnki.1001-3865.2018.03.020

    Article  Google Scholar 

  8. Li B, Boiarkina I, Yu W, Huang HM, Munir T, Wang GQ, Yong BR (2019) Phosphorous recovery through struvite crystallization: challenges for future design [J]. Sci Total Environ 648:1244–1256. https://doi.org/10.1016/j.scitotenv.2018.07.166

    Article  Google Scholar 

  9. Bacelo H, Pintor AMA, Santos SCR, Boaventura RAR, Botelho CMS (2020) Performance and prospects of different adsorbents for phosphorus uptake and recovery from water [J]. Chem Eng J 381:122566. https://doi.org/10.1016/j.cej.2019.122566

    Article  Google Scholar 

  10. Tansel B, Lunn G, Monje O (2018) Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia-phosphate interactions [J]. Chemosphere 194:504–514. https://doi.org/10.1016/j.chemosphere.2017.12.004

    Article  Google Scholar 

  11. Wu B, Wan J, Zhang YY, Pan BC, Lo IMC (2020) Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms [J]. Environ Sci Technol 54(1):50–66. https://doi.org/10.1021/acs.est.9b05569

    Article  Google Scholar 

  12. Yan H, Chen Q, Liu J, Feng Y, Shih K (2018) Phosphorus recovery through adsorption by layered double hydroxide nano-composites and transfer into a struvite-like fertilizer [J]. Water Res 145:721–730. https://doi.org/10.1016/j.watres.2018.09.005

    Article  Google Scholar 

  13. Kong L, Tian Y, Pang Z, Huang X, Li M, Yang R, Li N, Zhang J, Zuo W (2019) Synchronous phosphate and fluoride removal from water by 3D rice-like lanthanum-doped La@MgAl nanocomposites [J]. Chem Eng J 371:893–902. https://doi.org/10.1016/j.cej.2019.04.116

    Article  Google Scholar 

  14. Wendling LA, Blomberg P, Sarlin T, Priha O, Arnold M (2013) Phosphorus sorption and recovery using mineral-based materials: Sorption mechanisms and potential phytoavailability [J]. Appl Geochem 37:157–169. https://doi.org/10.1016/j.apgeochem.2013.07.016

    Article  Google Scholar 

  15. Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T (2006) Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide [J]. J Colloid Interf Sci 297:426–433. https://doi.org/10.1016/j.jcis.2005.11.011

    Article  Google Scholar 

  16. Namasivayam C, Prathap K (2005) Recycling Fe(III)/Cr(III) hydroxide, an industrial solid waste for the removal of phosphate from water [J]. J Hazard Mater 123(1–3):127–134. https://doi.org/10.1016/j.jhazmat.2005.03.037

    Article  Google Scholar 

  17. Koilraj P, Sasaki K (2016) Fe3O4/MgAl-NO3 layered double hydroxide as a magnetically separable sorbent for the remediation of aqueous phosphate [J]. J Environ Chem Eng 4(1):984–991. https://doi.org/10.1016/j.jece.2016.01.005

    Article  Google Scholar 

  18. Chen J, Kong H, Wu D, Hu Z, Wang Z, Wang Y (2006) Removal of phosphate from aqueous solution by zeolite synthesized from fly ash [J]. J Colloid Interf Sci 300(2):491–497. https://doi.org/10.1016/j.jcis.2006.04.010

    Article  Google Scholar 

  19. Shams M, Dehghani MH, Nabizadeh R, Mesdaghinia A, Alimohammadi M, Najafpoor AA (2016) Adsorption of phosphorus from aqueous solution by cubic zeolitic imidazolate framework-8: modeling, mechanical agitation versus sonication [J]. J Mol Liq 224:151–157. https://doi.org/10.1016/j.molliq.2016.09.059

    Article  Google Scholar 

  20. Acelas NY, Martin BD, Lopez D, Jefferson B (2015) Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media [J]. Chemosphere 119:1353–1360. https://doi.org/10.1016/j.chemosphere.2014.02.024

    Article  Google Scholar 

  21. Novais SV, Zenero MDO, Tronto J, Conz RF, Cerri CEP (2018) Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption [J]. J Environ Manag 214:36–44. https://doi.org/10.1016/j.jenvman.2018.02.088

    Article  Google Scholar 

  22. Chen LC, Li YZ, Sun YB, Chen Y, Qian JS (2019) La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability [J]. Chem Eng J 360:342–348. https://doi.org/10.1016/j.cej.2018.11.234

    Article  Google Scholar 

  23. Koilraj P, Sasaki K (2017) Selective removal of phosphate using La-porous carbon composites from aqueous solutions: batch and column studies [J]. Chem Eng J 317:1059–1068. https://doi.org/10.1016/j.cej.2017.02.075

    Article  Google Scholar 

  24. Wang J, Wu L, Li J, Tang D, Zhang G (2018) Simultaneous and efficient removal of fluoride and phosphate by Fe-La composite: adsorption kinetics and mechanism [J]. J Alloy Compd 753:422–432. https://doi.org/10.1016/j.jallcom.2018.04.177

    Article  Google Scholar 

  25. Everaert M, Warrinnier R, Baken S, Gustafsson JP, Vos DD, Smolders E (2016) Phosphate-exchanged Mg–Al layered double hydroxides: a new slow release phosphate fertilizer [J]. ACS Sustain Chem Eng 4(8):4280–4287. https://doi.org/10.1021/acssuschemeng.6b00778

    Article  Google Scholar 

  26. Liu JY, Zhou Q, Chen JH, Zhang L, Chang N (2013) Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber [J]. Chem Eng J 215:859–867. https://doi.org/10.1016/j.cej.2012.11.067

    Article  Google Scholar 

  27. Xie J, Wang Z, Lu SY, Wu DY, Zhang ZJ, Kong HN (2014) Removal and recovery of phosphate from water by lanthanum hydroxide materials [J]. Chem Eng J 254:163–170. https://doi.org/10.1016/j.cej.2014.05.113

    Article  Google Scholar 

  28. Huang WY, Wang X, Li D, Ho G, Zhang YM (2013) One-pot synthesis of mesoporous La(OH)3 adsorbent and its application for phosphate removal. In: Chemeca 2013: challenging tomorrow, conference paper, 1 January 2013. Engineers Australia, Barton, pp 22–25

  29. Zhang YJ, Han KD, Cheng T, Fang Z, Y. (2007) Synthesis, characterization, and photoluminescence property of LaCO3OH microspheres. Inorg Chem 46(11):4713–4717. https://doi.org/10.1021/ic0701458

    Article  Google Scholar 

  30. Chatelet L, Bottero J, Yvon J (1996) Competition between monovalent and divalent anions for calcined and uncalcined hydrotalcite: anion exchange and adsorption sites [J]. Colloid Surface A 111(3):167–175. https://doi.org/10.1016/0927-7757(96)03542-X

    Article  Google Scholar 

  31. Schneider M, Drenkova TA, Szczerba W, Gellermann C, Meyer C, Steinmetz H, Mandel K, Sextl G (2017) Nanostructured ZnFeZr oxyhydroxide precipitate as efficient phosphate adsorber in waste water: understanding the role of different material-building-blocks [J]. Environ Sci Nano 4:180–190. https://doi.org/10.1039/C6EN00507A

    Article  Google Scholar 

  32. Li BT, Jing F, Hu ZQ, Liu YX, Xiao B, Guo DB (2021) Simultaneous recovery of nitrogen and phosphorus from biogas slurry by Fe-modified biochar [J]. J Saudi Chem Soc 25(4):101213. https://doi.org/10.1016/j.jscs.2021.101213

    Article  Google Scholar 

  33. Ding LK, Lin HJ, Zamalloa C, Hu B (2021) Simultaneous phosphorus recovery, sulfide removal, and biogas production improvement in electrochemically assisted anaerobic digestion of dairy manure [J]. Sci Total Environ 777:146226. https://doi.org/10.1016/j.scitotenv.2021.146226

    Article  Google Scholar 

  34. Zeng WS, Wang DH (2021) Phosphorus recovery from pig farm biogas slurry by the catalytic ozonation process with MgO as the catalyst and magnesium source [J]. JClean Prod. https://doi.org/10.1016/j.jclepro.2020.122133

    Article  Google Scholar 

  35. Wu P, Xia L (2018) Simultaneous sorption of arsenate and fluoride on calcined Mg–Fe–La hydrotalcite-Like compound from water [J]. ACS Sustainable Chem Eng 6:16287–16297. https://doi.org/10.1021/acssuschemeng.8b03209

    Article  Google Scholar 

  36. Kong LC, Tian Y, Pang Z, Huang XH, Li M, Yang RC, Li N, Zhang J, Zuo W, Li JJ (2019) Needle-like Mg-La bimetal oxide nanocomposites derived from periclase and lanthanum for cost-effective phosphate and fluoride removal: characterization, performance and mechanism. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122963

    Article  Google Scholar 

  37. Yan L, Tu H, Chan T, Jing C (2016) Mechanistic study of simultaneous arsenic and fluoride removal using granular TiO2-La adsorbent [J]. Chem Eng J. https://doi.org/10.1016/j.cej.2016.10.142

    Article  Google Scholar 

  38. Wang J, Kang D, Yu X, Ge M, Chen Y (2015) Synthesis and characterization of Mg–Fe–La trimetal composite as an adsorbent for fluoride removal—sciencedirect [J]. Chem Eng J 264:506–513. https://doi.org/10.1016/j.cej.2014.11.130

    Article  Google Scholar 

  39. Stefov V, Abdija Z, Najdoski M, Koleva V, Petruševski VM, Runčevski T, Dinnebier RE, Šoptrajanov B (2013) Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. IX: spectra of protiated and partially deuterated cubic magnesium caesium phosphate hexahydrate [J]. Vib Spectrosc 68:122–128. https://doi.org/10.1016/j.vibspec.2013.06.003

    Article  Google Scholar 

  40. Sunding MF, Hadidi K, Diplas S, Løvvik OM, Norby TE, Gunnæs AE (2011) XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures [J]. J Electron Spectrosc 184(7):399–409. https://doi.org/10.1016/j.elspec.2011.04.002

    Article  Google Scholar 

  41. Jørgensen S, Horst JA, Dyrlie O, Larring Y, Ræder H, Norby T (2002) XPS surface analyses of LaPO4 ceramics prepared by precipitation with or without excess of PO43− [J]. Surf Interface Anal 34(1):306–310. https://doi.org/10.1002/sia.1306

    Article  Google Scholar 

  42. Wu RS, Lam KH, Lee JM, Lau TC (2007) Removal of phosphate from water by a highly selective La(III)-chelex resin [J]. Chemosphere 69(2):289–294. https://doi.org/10.1016/j.chemosphere.2007.04.022

    Article  Google Scholar 

  43. Xia P, Wang X, Wang X, Zhang J, Wang H, Song J, Ma R, Wang J, Zhao J (2016) Synthesis and characterization of MgO modified diatomite for phosphorus recovery in eutrophic water [J]. J Chem Eng Data 62(1):226–235. https://doi.org/10.1021/acs.jced.6b00616

    Article  Google Scholar 

  44. Zhang L, Wan L, Chang N, Liu J, Duan C, Zhou Q, Li X, Wang X (2011) Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide [J]. J Hazard Mater 190(1–3):848–855. https://doi.org/10.1016/j.jhazmat.2011.04.021

    Article  Google Scholar 

  45. Zhang H, Elskens M, Chen G, Chou L (2019) Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs [J]. Chemosphere 225:352–359. https://doi.org/10.1016/j.chemosphere.2019.03.068

    Article  Google Scholar 

  46. Yan L, Tu H, Chan TS, Jing CY (2017) Mechanistic study of simultaneous arsenic and fluoride removal using granular TiO2-La adsorbent [J]. Chem Eng J 313:983–992. https://doi.org/10.1016/j.cej.2016.10.142

    Article  Google Scholar 

  47. Pan B, Xie Q, Wang H, Zhu J, Zhang Y, Su W, Wang X (2013) Synthesis and photocatalytic hydrogen production of a novel photocatalyst LaCO3OH [J]. J Mater Chem A 1(22):6629. https://doi.org/10.1039/C3TA01553J

    Article  Google Scholar 

  48. Yang F, Zhang S, Sun Y, Tsang D, Cheng K, Ok Y (2019) Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery [J]. J Hazard Mater 365:665–673. https://doi.org/10.1016/j.jhazmat.2018.11.047

    Article  Google Scholar 

  49. Ahmed S, Lo IMC (2020) Phosphate removal from river water using a highly efficient magnetically recyclable Fe3O4/La(OH)3 nanocomposite [J]. Chemosphere 261:128118. https://doi.org/10.1016/j.chemosphere.2020.128118

    Article  Google Scholar 

  50. Zhang X, Shen J, Ma Y, Liu L, Meng R, Yao J (2019) Highly efficient adsorption and recycle of phosphate from wastewater using flower-like layered double oxides and their potential as synergistic flame retardants [J]. J Colloid Interf Sci 562:578–588. https://doi.org/10.1016/j.jcis.2019.11.076

    Article  Google Scholar 

  51. Yang Y, Yuen K, Li R, Zhang H, Yan Y, Chen J (2020) An innovative lanthanum carbonate grafted microfibrous composite for phosphate adsorption in wastewater [J]. J Hazard Mater 392:121952. https://doi.org/10.1016/j.jhazmat.2019.121952

    Article  Google Scholar 

  52. Wu J, Lin J, Zhan Y (2020) Adsorption of phosphate on Mg /Fe layered double hydroxides (Mg/Fe-LDH) and use of Mg /Fe-LDH as an amendment for controlling phosphorus release from sediments [J]. Environ Sci 41(01):273–283. https://doi.org/10.13227/j.hjkx.201907174

    Article  Google Scholar 

  53. Kaparaju PLN, Rintala JA (2008) Effects of solid liquid separation on recovering residual methane and nitrogen from digested dairy cow manure [J]. Bioresour Technol 99(1):120–127. https://doi.org/10.1016/j.biortech.2006.11.046

    Article  Google Scholar 

  54. Zhang ZY, Xu ZC, Song XY, Zhang BX, Zhang BX, Li GX, Huda N, Luo WH (2020) Membrane processes for resource recovery from anaerobically digested livestock manure effluent: opportunities and challenges [J]. Curr Pollut Rep 6(2):123–136. https://doi.org/10.1007/s40726-020-00143-7

    Article  Google Scholar 

  55. Münch EV, Barr K (2001) Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams [J]. Wat Res 35(1):151–159. https://doi.org/10.1016/s0043-1354(00)00236-0

    Article  Google Scholar 

  56. Taddeo R, Lepistö R (2015) Struvite precipitation in raw and co-digested swine slurries for nutrients recovery in batch reactors [J]. Water Sci Technol 71(6):892–897. https://doi.org/10.2166/wst.2015.045

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Shen, Y., Meng, H. et al. Development of Mg/La-layered double hydroxide nanocomposites and application of recovered phosphorus from modelled biogas slurry. J Mater Cycles Waste Manag 24, 491–505 (2022). https://doi.org/10.1007/s10163-021-01335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01335-z

Keywords

Navigation