Skip to main content

Impact of municipal solid waste incineration bottom ash on the properties and frost resistance of clay bricks

Abstract

This paper presents an experimental study on the properties, structure and durability (frost resistance: one-side and all-sides freezing and thawing method) of fired clay bricks containing clay and municipal solid waste incineration (MSWI) bottom ash (BA). BA is a non-hazardous substance containing mainly CaO and SiO2, and also a low content of heavy metals. Clay was replaced with the BA up to 15% by weight. The bricks were fired at 1000 °C temperature and maintained at the maximum heat for 1 h. According to the research data, BA addition has an effect on the structure and properties of clay bricks. Higher content of BA in the mix of clay bricks leads to the increase of water absorption and total porosity and the decrease of density, and, therefore, lowers the durability (frost resistance) of clay bricks. In clay bricks with higher BA content the typical brick surface damages start appearing after the lower number of freezing and thawing cycles (both in one-side and all-sides freezing and thawing method). Nevertheless, all samples tested for resistance to freezing and thawing in one-side method is classified as F2 class according to the LST EN 772-22:2019 standard (severe weather resistance).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Van Herck P, Van der Bruggen B, Vogels G, Vandecasteele C (2000) Application of computer modelling to predict the leaching behaviour of heavy metals from MSWI fly ash and comparison with a sequential extraction method. Waste Manage 20:203–210. https://doi.org/10.1016/S0956-053X(99)00321-9

    Article  Google Scholar 

  2. 2.

    Wunsch P, Greilinger C, Bieniek D, Kettrup A (1996) Investigation of the binding of heavy metals in thermally treated residues from waste incineration. Chemosphere 32:2211–2218. https://doi.org/10.1016/0045-6535(96)00123-3

    Article  Google Scholar 

  3. 3.

    Izquierdo M, López-Soler A, Ramonich EV, Barra M, Querol X (2002) Characterisation of bottom ash from municipal solid waste incineration in Catalonia. J Chem Technol Biotechnol 77:576–583. https://doi.org/10.1002/jctb.605

    Article  Google Scholar 

  4. 4.

    Chimenos JM, Segarra M, Fernández MA, Espiell F (1999) Characterization of the bottom ash in municipal solid waste incinerator. J Hazard Mater 64(3):211–222. https://doi.org/10.1016/S0304-3894(98)00246-5

    Article  Google Scholar 

  5. 5.

    Del Valle-Zermeño R, Giró-Paloma J, Formosa JCJ (2014) Glass content in MSWI bottom ash: effectiveness assessment of recycling over time. In: Cossu R (ed) Second symp. Urban min, Eurowaste Srl, Bergamo, Italy, pp 1–14

  6. 6.

    Pan JR, Huang C, Kuo JJ, Lin SH (2008) Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Manage 28:1113–1118. https://doi.org/10.1016/j.wasman.2007.04.009

    Article  Google Scholar 

  7. 7.

    Andreola F, Barbieri L, Hreglich S, Lancellotti I, Morselli L, Passarini F, Vassura I (2008) Reuse of incinerator bottom and fly ashes to obtain glassy materials. J Hazard Mater 153:1270–1274. https://doi.org/10.1016/j.jhazmat.2007.09.103

    Article  Google Scholar 

  8. 8.

    Gines O, Chimenos JM, Vizcarro A, Formosa J, Rosell JR (2009) Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: environmental and mechanical considerations. J Hazard Mater 169:643–650. https://doi.org/10.1016/j.jhazmat.2009.03.141

    Article  Google Scholar 

  9. 9.

    Shih PH, Chang JE, Chiang LC (2003) Replacement of raw mix in cement production by municipal solid waste incineration ash. Cem Concr Res 33:1831–1836. https://doi.org/10.1016/S0008-8846(03)00206-0

    Article  Google Scholar 

  10. 10.

    Saikia N, Kato S, Kojima T (2007) Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Manage 27:1178–1189. https://doi.org/10.1016/j.wasman.2006.06.004

    Article  Google Scholar 

  11. 11.

    Garcia-Lodeiro I, Carcelen-Taboada V, Fernández-Jiménez A, Palomo A (2016) Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Constr Build Mater 105(15):218–226. https://doi.org/10.1016/j.conbuildmat.2015.12.079

    Article  Google Scholar 

  12. 12.

    Wongsa A, Boonserm K, Waisurasingha C, Sata V, Chindaprasirt P (2017) Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J Clean Prod 148:49–59. https://doi.org/10.1016/j.jclepro.2017.01.147

    Article  Google Scholar 

  13. 13.

    Taurino R, Karamanov A, Rosa R, Karamanova E, Barbieri L, Atanasova S, Avdeev G, Leonelli C (2017) New ceramic materials from MSWI bottom ash obtained by an innovative microwave-assisted sintering process. J Eur Ceram Soc 37(1):323–331. https://doi.org/10.1016/j.jeurceramsoc.2016.08.011

    Article  Google Scholar 

  14. 14.

    Dou X, Ren F, Nguyen MQ, Ahamed A, Yin K, Chan WP, Wei-Chung Chang V (2017) Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew Sustain Energy Rev 79:24–38. https://doi.org/10.1016/j.rser.2017.05.044

    Article  Google Scholar 

  15. 15.

    Lin CF, Wu CH, Ho HM (2006) Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials. Waste Manage 26(9):970–978. https://doi.org/10.1016/j.wasman.2005.09.014

    Article  Google Scholar 

  16. 16.

    Wei Y, Shimaoka T, Saffarzadeh A, Takahashi F (2011) Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phase. J Hazard Mater 187:534–543. https://doi.org/10.1016/j.jhazmat.2011.01.070

    Article  Google Scholar 

  17. 17.

    Yang MJ, Wang HJ, Liang CF (2014) Effects of strengths of cement mortar when using incinerator bottom ash as fine aggregate. World J Eng Technol 2:42–47. https://doi.org/10.4236/wjet.2014.23B007

    Article  Google Scholar 

  18. 18.

    Bethanis S, Sollars CJ, Cheeseman CR (2002) Properties and microstructure of sintered incinerator bottom ash. Ceram Int 28:881–886. https://doi.org/10.1016/S0272-8842(02)00068-8

    Article  Google Scholar 

  19. 19.

    Cheeseman CR, Monteiro da Rocha S, Sollars C, Bethanis S, Boccaccini AR (2003) Ceramic processing of incinerator bottom ash. Waste Manage 23:907–916. https://doi.org/10.1016/S0956-053X(03)00039-4

    Article  Google Scholar 

  20. 20.

    Schabbach LM, Andreola F, Lancellotti I, Barbieri L (2011) Minimization of Pb content in a ceramic glaze by reformulation the composition with secondary raw materials. Ceram Int 37:1367–1375. https://doi.org/10.1016/j.ceramint.2010.12.009

    Article  Google Scholar 

  21. 21.

    Vichaphund S, Jiemsirilers S, Thavorniti P (2012) Sintering of municipal solid waste incineration bottom ash. J Eng Sci 8:51–59

    Google Scholar 

  22. 22.

    Giro-Paloma J, Ribas-Manero V, Maldonado-Alameda A, Formosa J, Chimenos JM (2017) Use of municipal solid waste incineration bottom ash and crop by-product for producing lightweight aggregate. IOP Conf Ser Mater Sci Eng 251(1):121–126

    Google Scholar 

  23. 23.

    Long Lin K (2006) Feasibility study of using brick made from municipal solid waste incinerator fly ash slag. J Hazard Mater 137(3):1810–1816. https://doi.org/10.1016/j.jhazmat.2006.05.027

    Article  Google Scholar 

  24. 24.

    Andreola F, Barbieri L, Lancelloti I, Pozzi P (2005) Recycling industrial waste in brick manufacture. Part 1. Mater Constr 55:5–16

    Google Scholar 

  25. 25.

    Taurino R, Karamanova E, Barbieri L, Atanasova S, Andreola F, Karamanov A (2017) New fired bricks based on municipal solid waste incinerator bottom ash. Waste Manage Res 35(10):124–128. https://doi.org/10.1177/0734242X17721343

    Article  Google Scholar 

  26. 26.

    Netinger Grubeša I, Vračević M, Ducman V, Marković B, Szenti I, Kukovecz A (2020) Influence of the size and type of pores on brick resistance to freeze-thaw cycles. Materials 13(17):3717. https://doi.org/10.3390/ma13173717

    Article  Google Scholar 

  27. 27.

    Ducman V, Sever Škapin A, Radeka M, Ranogajec J (2011) Frost resistance of clay roofing tiles: case study. Ceram Int 37(1):85–91. https://doi.org/10.1016/j.ceramint.2010.08.012

    Article  Google Scholar 

  28. 28.

    Sánchez de Rojas MI, Marín EP, Frías M, Valenzuela E, Rodríguez O (2011) Influence of freezing test methods, composition and microstructure on frost durability assessment of clay roofing tiles. Constr Build Mater 25(6):2888–2897. https://doi.org/10.1016/j.conbuildmat.2010.12.041

    Article  Google Scholar 

  29. 29.

    Perrin B, Vu NA, Multon S, Voland T, Ducroquetz C (2011) Mechanical behaviour of fired clay materials subjected to freeze–thaw cycles. Constr Build Mater 25(2):1056–1064. https://doi.org/10.1016/j.conbuildmat.2010.06.072

    Article  Google Scholar 

  30. 30.

    Barnat-Hunek D, Smarzewski P, Suchorab Z (2016) Effect of hydrophobisation on durability related properties of ceramic brick. Constr Build Mater 111:275–285. https://doi.org/10.1016/j.conbuildmat.2016.02.078

    Article  Google Scholar 

  31. 31.

    Franke L, Bentrup H (1993) Evaluation of the frost resistance of bricks in regard to long service life. Part 1. Ziegelindustr Int 7–8:483–492

    Google Scholar 

  32. 32.

    Franke L, Bentrup H (1993) Evaluation of the frost resistance of bricks in regard to long service life. Part 2. Ziegelindustr Int 9:528–536

    Google Scholar 

  33. 33.

    Koroth SR, Feldman D, Fazio P (1998) Development of new durability index for clay bricks. J Archit Eng 4:87–93. https://doi.org/10.1061/(ASCE)1076-0431(1998)4:3(87)

    Article  Google Scholar 

  34. 34.

    Sadunas A (1999) Aluminosilicate products burning process in the reducing-oxidizing gas medium. Vilnius: ISBN 9986-869-51-X, p 188

  35. 35.

    Christogerou A, Lampropoulou P, Panagiotopoulos E (2021) Increase of frost resistance capacity of clay roofing tiles with boron waste addition. Constr Build Mater 280:122493. https://doi.org/10.1016/j.conbuildmat.2021.122493

    Article  Google Scholar 

  36. 36.

    Eliche-Quesada D, Corpas-Iglesias FA, Pérez-Villarejo L, Iglesias-Godino FJ (2012) Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Constr Build Mater 34:275–284. https://doi.org/10.1016/j.conbuildmat.2012.02.079

    Article  Google Scholar 

  37. 37.

    Sutcu M, Erdogmus E, Gencel O, Gholampour A, Atan E, Ozbakkaloglu T (2019) Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. J Clean Prod 233:753–764. https://doi.org/10.1016/j.jclepro.2019.06.017

    Article  Google Scholar 

  38. 38.

    Cimmers A, Svinka R, Svinka V, Moertel H (2005) Pore structure of porous building ceramic materials from illite containing raw materials. Ce Ca 35:9–13

    Google Scholar 

  39. 39.

    Stryszewska T, Kanka S (2019) Forms of damage of bricks subjected to cyclic freezing and thawing in actual conditions. Materials 12:1165. https://doi.org/10.3390/ma12071165

    Article  Google Scholar 

  40. 40.

    Cultrone G, Sebastian E, Elert K, De la Torre MJ, Cazalla O, Rodriguez-Navarro C (2004) Influence of mineralogy and firing temperature on the porosity of bricks. J Eur Ceram Soc 24:547–564. https://doi.org/10.1016/S0955-2219(03)00249-8

    Article  Google Scholar 

  41. 41.

    Grubeša N, Vračević M, Ranogajec J, Vučetić V (2020) Influence of pore-size distribution on the resistance of clay brick to freeze-thaw cycles. Materials 13(10):2364. https://doi.org/10.3390/ma13102364

    Article  Google Scholar 

  42. 42.

    Nadeem H, Habib NZ, Ng CA, Zoorob SE, Mustaffa Z, Yong Chee S, Younas M (2017) Utilization of catalyzed waste vegetable oil as a binder for the production of environmentally friendly roofing tiles. J Clean Prod 145(1):250–261. https://doi.org/10.1016/j.jclepro.2017.01.028

    Article  Google Scholar 

  43. 43.

    Abdullah MJ, Zakiah A, Atikah FD, Nur KM (2015) Compressive Strength and water absorption characteristics of brick using quarry dust. InCIEC 2015:51–64. https://doi.org/10.1007/978-981-287-290-6_5

    Article  Google Scholar 

  44. 44.

    Vračević M, Ranogajec J, Vučetić S, Netinger I (2014) Evaluation of brick resistance to freeze/thaw cycles according to indirect procedures. Građevinar 66(3):197–209. https://doi.org/10.14256/JCE.956.2013

  45. 45.

    Šveda M (2003) Effect of water absorption on frost resistance of clay roofing tiles. Br Ceram Trans 102:43–45. https://doi.org/10.1179/096797803225009210

    Article  Google Scholar 

  46. 46.

    Bauluz B, Mayayo MJ, Fernández-Nieto C, Cultrone G, González López JM (2003) Assessment of technological properties of calcareous and non-calcareous clays used for the brick-making industry of Zaragoza (Spain). Appl Clay Sci 24(1–2):121–126. https://doi.org/10.1016/S0169-1317(03)00152-2

    Article  Google Scholar 

  47. 47.

    Raimondo M, Dondi M, Gardini D, Guarini G, Mazzanti F (2009) Predicting the initial rate of water absorption in clay bricks. Constr Build Mater 23(7):2623–2630. https://doi.org/10.1016/j.conbuildmat.2009.01.009

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olga Kizinievič.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kizinievič, O., Voišnienė, V., Kizinievič, V. et al. Impact of municipal solid waste incineration bottom ash on the properties and frost resistance of clay bricks. J Mater Cycles Waste Manag (2021). https://doi.org/10.1007/s10163-021-01314-4

Download citation

Keywords

  • Bottom ash
  • Clay bricks
  • Durability
  • Frost resistance
  • Waste recycling